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Abstract: The paper considers the dynamic problems for magnetoelectric (piezomagnetoelectric) nanodimen-
sional bodies with account for surface mechanical, electric and magnetic effects. For transient problem the new
mathematical model is suggested, which generalize the model of the elastic medium with damping properties and
surface effects for the cases of piezoelectric and magnetoelectric materials. For solving these problems the fi-
nite element approximations are proposed. The paper also deals with computer design of multiscale two-phase
magnetoelectric bulk composites that consist of piezomagnetic and piezoelectric fractions of regular and irregular
structures, modeling of the representative volumes, taking into account for microstructure features, using the finite
element technologies for solving the problems for the representative volumes.

1 INTRODUCTION

Electrically active materials (piezoelectric and magnetoelectric materials) are widely used for the manufacture
of high-tech devices for medical diagnostics and therapy, hydroacoustics, nondestructive testing and diagnostics,
level and flow metering, consumer, automotive, biomedical and aerospace industries. Rapidly growing demand
for efficiency, reliability and cost constantly stimulates the development of new and improved materials, devices
and systems. The analysis shows that the properties of the electrically active material remain the limiting factor in
the development of more effective piezoelectric transducers and devices. The simulation and experimental studies
of electrically active materials at various scale levels help to enhance the technologies of directed changing of
the properties of these materials and provide a qualitative improvement of their characteristics. The developed
in the recent years new nanostructured electrically active materials and composites have a range of important
advantages, such as the possibilities of controllable variation of the functional characteristics within a wide range,
the ultra-low mechanical quality factor, the large electromechanical anisotropy, the giant dielectric relaxation, and
the electrocaloric and piezoelectric effects.

Furthermore, it should be noted that the modeling of micro- and nanomaterials and devices has some specific
features. It is known that a range of nanomaterials have abnormal mechanical properties that considerably differ
from the properties of ordinary macrosized bodies. Thus, the experimentally observed fact is the increasing of
the stiffness with reducing the sizes of nanoobjects. One of the factors that are responsible for this behavior of
nanomaterials can be surface effects. As research of the recent years shows, for the bodies of submicro- and
nanosizes the surface stresses play an important role and influence the deformation of the bodies in general [6, 7,
8, 25]. In connection to this, the actual problem can be an extension of this approach to the nanoscale elements of
electrically active composites and materials [10, 23, 26, 27]. Therefore, here it is logical to consider not only the
mechanical surface effects, but also for the surface effects of electric and magnetic fields.

In present investigation in Sect. 2 we develop the models of electrically active materials account for their internal
microstructure in the framework of classic continuum approaches of solid mechanics and methods of composite
mechanics. We use these models to construct new models of the micro- and nanosize bodies made of electrically
active materials that were additionally take into account the surface and micro local effects [18, 19, 22].



In Sect. 3 we propose the finite element approximations for numerical solution of the formulated transient problems
[?, 22]. We note that for solving the received finite element systems we can use the algorithms with symmetric
quasidefinite matrices (matrices of saddle structure) [4]. This allows us to use corresponding effective direct
and iterative solvers for systems with symmetric quasidefinite matrices for both static and transient problems
[4, 9, 12, 29].

In Sect. 4, 5 we develop the effective moduli method and the finite element technique for magnetoelectric and
piezoelectric composites [15, 16, 17].

2 DYNAMIC PROBLEM FOR MAGNETOELECTRIC BODY WITH SURFACE EFFECTS

Here we consider the bulk magnetostrictive – piezoelectric composites as the continuous magnetoelectric (piezo-
magnetoelectric) material with effective properties defined by some homogeneous procedure, as for example de-
scribed in [5, 11, 13, 28] and in Sect. 4.

Let Ω ∈ R3 be a region occupied by a magnetoelectric material; Γ = ∂Ω is the boundary of Ω; n is the external
unit normal to Γ; x = {x1, x2, x3}; t is time; u = u(x, t) is the vector of mechanical displacements; φ = φ(x, t)
is the function of electric potential; ϕ = ϕ(x, t) is the function of magnetic potential. The system of differential
equations for magnetoelectric body with damping effects in the volume Ω can be written in the following vector-
matrix form:

L∗(∇) ·T+ ρ f = ρ (ü+ αdu̇), ∇ ·D = σΩ, ∇ ·B = 0 , (1)

T = c · (S+ βdṠ)− e∗ ·E− h∗ ·H , (2)

D+ ζdḊ = e · (S+ ζdṠ) + κ ·E+α ·H , (3)

B+ γdḂ = h · (S+ γdṠ) +α∗ ·E+ µ ·H , (4)

S = L(∇) · u, E = −∇φ, H = −∇ϕ , (5)

L∗(∇) =

 ∂1 0 0 0 ∂3 ∂2
0 ∂2 0 ∂3 0 ∂1
0 0 ∂3 ∂2 ∂1 0

 . (6)

Here T = {σ11, σ22, σ33, σ23, σ13, σ12}; S = {ε11, ε22, ε33, 2ε23, 2ε13, 2ε12}; σij and εij are the components of
the second-order stress and strain tensors, respectively; D is the electric flux density vector called also the electric
displacement vector; E is the electric field vector; B is the magnetic field vector; H is the magnetic flux density
vector; c = cE,H is the 6×6 matrix of elastic stiffness moduli; e = eH is the 3×6 matrix of piezoelectric moduli;
h = hE is the 3 × 6 matrix of magnetostriction moduli (piezomagnetic moduli); κ = κS,H = ϵS,H is the 3 × 3
matrix of dielectric permittivity moduli; α = αS is the 3 × 3 matrix of magnetoelectric coupling coefficients;
µ = µS,E is the 3 × 3 matrix of magnetic permeability moduli. The upper indexes indicate the constant fields
under which these moduli are calculated. So S denotes the strains, E denotes the electric field, H denotes the
magnetic field. αd, βd, ζd, γd are the damping coefficients; f is the vector of mass forces; σΩ is the density of free
electric charges (usually, σΩ = 0); (...)∗ is the transpose operation, and (...) · (...) is the scalar product operation.

We suppose that the material moduli have the usual symmetry properties: cαβ = cβα, κ kl = κ lk, µkl = µlk. In
addition to the latter the requirement of positive definiteness of the intrinsic energy of the magnetoelectric medium
leads to the following inequalities valid for all S, εij = εji, E and H:

S∗ · c · S+E∗ · κ ·E+ 2E∗ ·α ·H+H∗ · µ ·H ≥ cvU (S
∗ · S+E∗ ·E+H∗ ·H) ,

where cvU > 0 is a positive constant.

In models (1)–(6) for the magnetoelectric material, we use a generalized Rayleigh method of damping evaluation,
see [3, 14] for the case of piezoelectric material, which is admissible for many practical applications. When ζd =
γd = 0 in Eqs. (3) and (4), we have the model for taking into account of mechanical damping in magnetoelectric
media which is adopted in the case of elastic and piezoelectric materials in several well-known finite element
packages. More complicated model (3) and (4) extends Kelvin’s model to the case of magnetoelectric media. It
has been shown that the model (1)–(6) with βd = ζd = γd satisfies the conditions of the energy dissipation and has
the possibility of splitting the finite element system into independent equations for the separate modes in the case
of piezomagnetoelectric media.



For completeness the boundary and the initial conditions should be added to the system of differential equations
(1)–(6). The boundary conditions are of three types: mechanical, electric and magnetic.

To formulate the mechanical boundary conditions we assume that the boundary Γ ≡ ∂Ω is divided in two subsets
Γσ and Γu (Γ = Γσ ∪ Γu) for dynamic and kinematic boundary conditions, respectively. The dynamic boundary
conditions given at Γσ take the form

L∗(n) ·T = L∗(∇s) · τ s + pΓ, x ∈ Γσ , (7)

where ∇s is the surface gradient operator, associated with nabla-operator by the formula ∇s = ∇ − n(∂/∂r), r
is the coordinate, measured along the direction of normal n to Γσ; τ s = {σs

11, σ
s
22, σ

s
33, σ

s
23, σ

s
13, σ

s
12}; σs

ij are the
components of the second-order tensor of surface stresses, and pΓ is the external surface loads.

As for purely elastic body, when taking into account the surface stresses and the Kelvin’s damping model we adopt
that the surface stresses τ s are related to the surface strains εs = {εs11, εs22, εs33, 2εs23, 2εs13, 2εs12} by the formula
τ s = cs ·(εs+βdε̇

s), where εs = L(∇s) ·(u ·A); cs is the 6×6 matrix of surface elastic moduli; A = I−n⊗n;
I is the unit tensor (3× 3 matrix) in R3.

Here the properties of the matrix of surface elastic modules cs are analogous to the corresponding properties of
the matrixc, i.e. csαβ = csβα,

∃ csU > 0 , ∀ εs, εsij = εsji : U(εs) =
1

2
εs∗ · cs · εs ≥ csUε

s∗ · εs ,

that follow from the condition of the positive definiteness of the surface energy density U(εs) which is required
for well-posedness of the problem [1].

On the remaining part Γu of boundary Γ we pose known the mechanical displacements vector uΓ

u = uΓ, x ∈ Γu . (8)

To set the electric boundary conditions we assume that the surface Γ is also subdivided in two subsets: ΓD and Γφ

(Γ = ΓD ∪ Γφ).

The regions ΓD does not contain electrodes, so the following conditions hold

n ·D = ∇s · ds − σΓ, x ∈ ΓD , (9)

where the surface electric flux density vector ds joins with the surface electric field vector Es = −∇sφ by the
constitutive equation ds + ζdḋ

s = A · κs · A · Es; κs is the dielectric surface permittivity 3 × 3 matrix that
is symmetric positive definite relatively to the vectors Es; σΓ is the given surface density of electric charge, and
usually, σΓ = 0.

The subset Γφ is the union of M +1 regions Γφj (j ∈ JQ ∪JV , JQ = {1, 2, ...,m}, JV = {0,m,m+1, ...,M}),
that does not border on each other and are covered with infinitely thin electrodes. At these regions we set the
following boundary conditions

φ = Φj , x ∈ Γφj , j ∈ JQ , (10)∫
Γφj

n ·D dΓ = −Qj , Ij = ±Q̇j , x ∈ Γφj , j ∈ JQ , (11)

φ = Vj , x ∈ Γφj , j ∈ JV , Γj0 ̸= ∅ , (12)

where the variables Φj , Vj do not depend on x; Qj is the overall electric charge on Γφj , and the sign “±” in (11)
is chosen in accordance with the accepted direction of the current Ij in the electric circuit.

For magnetic boundary condition we suppose that the following condition hold on boundary Γ

n ·B = ∇s · bs, x ∈ Γ , (13)

where the surface magnetic flux density vector bs depends from the surface magnetic field vector Hs = −∇sϕ by
the constitutive equation bs + γdḃ

s = A · µs ·A ·Hs; µs is the magnetic surface permittivity 3× 3 matrix that
is symmetric positive definite relatively to the vectors Hs.



For transient problems it is also necessary to pose initial conditions which are given by

u = u∗(x), u̇ = v∗(x), t = 0, x ∈ Ω , (14)

where u∗(x) and v∗(x) are the known initial values of the corresponding fields.

Formulas (1)–(14) represent the statement of the transient problem for magnetoelectric body with the generalized
Rayleigh damping and with account for surface effects for mechanical, electric and magnetic fields. From (1)–
(14) we can also obtain the formulations of static, modal and harmonic problems for magnetoelectric media with
surface effects by standard methods.

We can also consider the particular cases of this model without tacking into account the connectivity between some
physical fields, and without the surface mechanical stresses (τ s = 0), surface electric fields (ds = 0), or surface
magnetic fields (bs = 0).

For example, we can obtain the model of piezoelectric material with damping properties and with surface effects,
if we assume h = 0 in (2), α = 0 in (3) and if we ignore the equations for magnetic fields.

3 FINITE ELEMENT APPROXIMATIONS

For solving the problems (1)–(14) we shall use the classical finite element approximation techniques [2, 30]. Let
Ωh be the region of the corresponding finite element mesh: Ωh ⊆ Ω, Ωh = ∪mΩem. On this mesh we shall find
the approximation to the weak solution {uh ≈ u, φh ≈ φ, ϕh} ≈ ϕ in the form

uh(x, t) = N∗
u(x) ·U(t), φh(x, t) = N∗

φ(x) ·Φ(t), ϕh(x, t) = N∗
ϕ(x) ·Ψ(t) , (15)

where N∗
u is the matrix of the shape functions for displacements, N∗

φ is the row vector of the shape functions for
electric potential, N∗

ϕ is the row vector of the shape functions for magnetic potential, U(t), Φ(t), Ψ(t) are the
global vectors of nodal displacements, electric potential and magnetic potential, respectively.

We represent the projecting functions v, χ and η in finite-dimensional spaces by the formulae

v(x) = N∗
u(x) · δU, χ(x) = N∗

φ(x) · δΦ, η(x) = N∗
ϕ(x) · δΨ . (16)

In accordance with standard finite element technique we approximate the weak formulation of the problems (1)–
(14) in finite-dimensional spaces. Substituting (15) and (16) into the weak formulation of the problems (1)–(14)
for Ωh, Γh = ∂Ωh, Γσh, ΓDh, without taking into account the principal boundary conditions we obtain

Muu · Ü+Cuu · U̇+Kuu ·U+Kuφ ·Φ+Kuϕ ·Ψ = Fu , (17)

−K∗
uφ · (U+ ζdU̇) +Kφφ ·Φ+Kφϕ ·Ψ = Fφ , (18)

−K∗
uϕ · (U+ γdU̇) +K∗

φϕ ·Φ+Kϕϕ ·Ψ = 0 , (19)

with the initial conditions
U(0) = U∗, U̇(0) = V∗ , (20)

which are derived from the corresponding conditions (14).

Here, Muu =
∑a

Mek
uu, Cuu =

∑a
Cek

uu, Kuu =
∑a

Kek
uu, Kuφ =

∑a
Kek

uφ, etc., are the global matrices,
obtained from the corresponding element matrices ensemble (

∑a).

The element matrices are given by the formulas

Mek
uu =

∫
Ωek

ρNe
u ·Ne∗

u dΩ, Cek
uu = αdM

ek
uu + βdK

ek
uu , (21)

Kek
uu = Kek

Ωuu +Kek
Γuu, Kek

φφ = Kek
Ωφφ +Kek

Γφφ, Kek
ϕϕ = Kek

Ωϕϕ +Kek
Γϕϕ , (22)

Kek
Ωuu =

∫
Ωek

Be∗
u · c ·Be

u dΩ, Kek
Γuu =

∫
Γek
σ

Be∗
su · cs ·Be

su dΓ , (23)



Kek
Ωφφ =

∫
Ωek

Be∗
φ · κ ·Be

φ dΩ, Kek
Γφφ =

∫
Γek
D

Be∗
sφ · κs ·Be

sφ dΓ , (24)

Kek
Ωϕϕ =

∫
Ωek

Be∗
ϕ · µ ·Be

ϕ dΩ, Kek
Γϕϕ =

∫
Γek

Be∗
sϕ · µs ·Be

sϕ dΓ , (25)

Kek
uφ =

∫
Ωek

Be∗
u · e∗ ·Be

φ dΩ, Kek
uϕ =

∫
Ωek

Be∗
u · h∗ ·Be

ϕ dΩ , (26)

Kek
φϕ =

∫
Ωek

Be∗
φ ·α ·Be

ϕ dΩ , (27)

Be
(s)u = L(∇(s)) ·Ne∗

u , Be
(s)φ = ∇(s)Ne∗

φ , Be
(s)ϕ = ∇(s)Ne∗

ϕ , (28)

where Γek, Γek
σ , Γek

D , are the edges of finite elements facing the regions Γh, Γhσ , ΓhD, that approximate the
corresponding boundaries Γ, Γσ, ΓhD; Ne∗

u , Ne∗
φ , Ne∗

ϕ are the matrices and the row vectors of approximate shape
functions, respectively, defined on separate finite elements.

We note that in (17)–(28) the global and element matrices of mass and stiffness Muu, Mek
uu, KΩuu, Kek

Ωuu and
nodal mechanical force vector Fu are formed in the same way as for purely elastic body, the matrices Kuφ,
Kek

uφ, KΩφφ, Kek
Ωφφ and nodal electric force vector Fφ are identical to the corresponding matrices and vector for

piezoelectric bodies, and Kuϕ, Kek
uϕ, KΩϕϕ, Kek

Ωϕϕ are identical to the corresponding matrices for piezomagnetic
bodies. The vectors Fu and Fφ in (17), (18) are obtained from the boundary conditions, the corresponding right
parts of the weak statements, and the finite element approximations. The matrices KΓuu, Kek

Γuu, KΓφφ, Kek
Γφφ

and KΓϕϕ, Kek
Γϕϕ are defined by the surface stresses and surface electric and magnetic films, respectively. These

matrices are analogous to the stiffness matrices for surface elastic membranes and the matrices of dielectric and
magnetic permittivities for surface dielectric and magnetic films. Hence, for implementing the finite element
magnetoelectric analysis for the bodies with surface effects it is necessary to have surface structural membrane
elements and surface finite elements of dielectric and magnetic films along with ordinary solid magnetoelectric
finite elements.

For the case of the homogeneous principal boundary conditions with βd = ζd = γd, we can apply the mode
superposition method for solving harmonic and transient problems. The given fact is one of the primary preference
for the selected method for damping account and the supplement of the terms with βd, ζd and γd in constitutive
equations for volumetric and surface fields.

Note that similarly to [3, 14] we can use an effective algorithm with symmetric quasidefinite matrices for solving
finite element Eqs. (17)–(19). For example we can use Newmark method for integrating Cauchy problem (17)–(20)
with symmetric quasidefinite effective stiffness matrices in a formulation where the velocities and the accelerations
at the time layers are not given explicitly [3, 14]. All the procedures that we need in finite element manipulations
(the degree of freedom rotations, mechanical and electric boundary condition settings, etc.) we can also provide in
a symmetric form.

4 MODELS OF MAGNETOELECTRIC COMPOSITE MATERIALS

Now, let Ω be a volume of two-phase composite heterogeneous body composed of two materials Ωe and Ωm

(Ω = Ωe ∪ Ωm), where the phase Ωe has the piezoelectric properties and the phase Ωm has the piezomagnetic
properties. Both phases Ωe and Ωm can consist of separate, generally speaking, disjointed subregions Ωe = ∪kΩek,
Ωm = ∪lΩml, that in the aggregate have common boundaries and do not overlap each other. Thus, here we
consider a two-phase mixture composite with piezoelectric and piezomagnetic fractions.

As usual, we will denote the volume-averaged quantities in the broken brackets as:

⟨(...)⟩ = 1

|Ω|

∫
Ω

(...) dΩ. (29)

We will formulate the auxiliary statements for electromagnetoelastic body [15, 16, 17] following the proof of the
effective moduli method for elastic medium. These statements are substantiated under similar techniques, that are
used for elastic and piezoelectric bodies [20, 24].



Lemma 1. These representations take place for the field characteristics (5) averaged in the volume Ω by means of
the appropriate values on the boundary Γ:

(a) ∀ S, ⟨Sj⟩ =
1

|Ω|

∫
Γ

ujnj dΓ, j = 1, 2, 3, ⟨S4⟩ =
1

|Ω|

∫
Γ

(u2n3 + u3n2) dΓ,

⟨S5⟩ =
1

|Ω|

∫
Γ

(u1n3 + u3n1) dΓ, ⟨S6⟩ =
1

|Ω|

∫
Γ

(u1n2 + u2n1) dΓ,

(b) ∀ E, H, ⟨E⟩ = − 1

|Ω|

∫
Γ

nφdΓ, ⟨H⟩ = − 1

|Ω|

∫
Γ

nϕdΓ.

Lemma 2. For x ∈ Γ we have the following relations:

(a) if u = L∗(x) · S0, where S0 = const, i.e. S0 consists of the components of arbitrary symmetric independent
on x second rank strain tensor, then ⟨S⟩ = S0;

(b) if φ = −x ·E0, where E0 = const, i.e. E0 is the arbitrary independent on x vector, then ⟨E⟩ = E0;

(c) if ϕ = −x ·H0, where H0 = const, i.e. H0 is the arbitrary independent on x vector, then ⟨H⟩ = H0.

Lemma 3. If for x ∈ Γ:

(a) u = L∗(x)·S0, S0 = const, and the equilibrium equation L∗(∇)·T = 0 takes place for any given components
of symmetric second rank stress tensor, then we have ⟨T · S⟩ = ⟨T⟩ · ⟨S⟩;

(b) φ = −x ·E0, E0 = const, and the equation of electrostatics ∇ ·D = 0 takes place for any given electric flux
density vector D, then we have ⟨D ·E⟩ = ⟨D⟩ · ⟨E⟩;

(c) ϕ = −x ·H0, H0 = const, and the equation of magnetostatics ∇ ·B = 0 takes place for any given magnetic
flux density vector B, then we have ⟨B ·H⟩ = ⟨B⟩ · ⟨H⟩.

In accordance with fundamental form of constitutive equations we will introduce the moduli of the magnetoelectric
medium (Eqs. (2)–(4) without damping effects):

T = c · S− e∗ ·E− h∗ ·H , (30)

D = e · S+ κ ·E+α ·H , (31)

B = h · S+α∗ ·E+ µ ·H . (32)

For inhomogeneous two-phase magnetoelectric body these moduli will be functions of coordinates x: c = c(x);
e = e(x) etc., and α = 0, ∀ x ∈ Ω; q = 0, ∀x ∈ Ωe; e = 0, ∀ x ∈ Ωm.

Note that for the case of the piezoelectric medium we do not take into account the magnetic fields H, B, and we
use the reduced constitutive equations

T = c · S− e∗ ·E,

D = e · S+ κ ·E.

Let Ω be the representative volume of the heterogeneous magnetoelectric materials with piezoelectric and piezo-
magnetic phases. We will determine the effective moduli c̃, ẽ, h̃, κ̃, α̃, µ̃ by the following technique, similar
to the well-known procedures for purely elastic and piezoelectric composites [20, 24]. We consider the static
magnetoelectric (piezomagnetoelectric or magnetoelectroelastic) problem for representative volume Ω:

L∗(∇) ·T = 0, ∇ ·D = 0, ∇ ·B = 0, x ∈ Ω, (33)

u = L∗(x) · S0, φ = −x ·E0, ϕ = −x ·H0, x ∈ Γ. (34)

From the solution of the problem (33), (34) and (5), (30)–(32) we find the fields S, E, H, T, D and B. We note
from Lemma 2, that for the problem (5), (30)–(34): ⟨S⟩ = S0, ⟨E⟩ = E0 and ⟨H⟩ = H0.



Let us put some ”equivalent” homogeneous medium with the effective moduli c̃, ẽ, h̃, κ̃, α̃, µ̃ into correspondence
with initial heterogeneous medium. The constitutive equations for ”equivalent” medium, similar to (30)–(32), are
given in the forms:

T0 = c̃ · S0 − ẽ∗ ·E0 − h̃∗ ·H0, (35)

D0 = ẽ · S0 + κ̃ ·E0 + α̃ ·H0, (36)

B0 = h̃ · S0 + α̃∗ ·E0 + µ̃ ·H0. (37)

For the problem (5), (30)–(34) we accept the following equations such as relations for determination of effective
moduli from (35)–(37):

⟨T⟩ = T0, ⟨D⟩ = D0, ⟨B⟩ = B0. (38)

Note that due to Lemma 3 the average energies are equal for both heterogeneous and ”equivalent” homogeneous
magnetoelectric media:

⟨T · S+D ·E+B ·H⟩/2 = (T0 · S0 +D0 ·E0 +B0 ·H0)/2.

Now, by using Eqs. (35)–(38), we can select such boundary conditions, that enable to obtain obvious expressions
for the effective moduli. For example, we consider the problem (5), (30)–(34) with

S0β = ε0, S0γ = 0, γ ̸= β, E0 = 0, H0 = 0, (39)

where β is some fixed number (β = 1, 2, ..., 6); ε0 = const. Then, from Eqs. (35)–(39) we obtain (α = 1, 2, ..., 6,
j = 1, 2, 3):

c̃αβ = ⟨Tα⟩/(ε0), ẽjβ = ⟨Dj⟩/(ε0), h̃jβ = ⟨Bj⟩/(ε0). (40)

If in Eq. (34) we accept (E0 = const)

S0 = 0, E0 = E0ek, H0 = 0, (41)

where ek are the unit vectors of Cartesian basis, then from (35)–(38), (41) we find

ẽkα = −⟨Tα⟩/E0, κ̃jk = ⟨Dj⟩/E0, α̃kj = ⟨Bj⟩/E0. (42)

Finally, if in Eq. (34) we accept (H0 = const)

S0 = 0, E0 = 0, H0 = H0ek, (43)

then from (35)–(38), (43) we find

h̃kα = −⟨Tα⟩/H0, α̃jk = ⟨Dj⟩/H0, µ̃jk = ⟨Bj⟩/H0. (44)

Note, that the quantities Tα, Dj and Bj in (40), (42) and (44) are different, since they are calculated from the
solutions of the problems (5), (30)–(34) with various values S0, E0 and H0 in the boundary conditions (34): (39),
(41) and (43), respectively.

Equations (29), (39)–(44) allow us to obtain the full set of the effective moduli for magnetoelectric composite
media with arbitrary anisotropy class. In this connection we can consider piezoelectric composite medium as a
special case of magnetoelectric composite, where Ωm is the empty set and Ω = Ωe is the region occupied by a
heterogeneous body with only piezoelectric properties.



5 MODELLING OF THE REPRESENTATIVE VOLUMES AND FINITE ELEMENT SOLUTION

The use of the formulas presented above for the computation of the effective moduli leads to the solution of
the corresponding boundary-value magnetoelectric problems in the regions Ω, that should be the representative
volumes of the composite materials. Ideally, in order to be chosen as the representative volumes, the regions
should be large enough compared to the sizes of the inhomogeneity but small enough compared to the distances
where the slow variables considerably change.

Let us consider a binary composite, the first phase of which is the coherent structural skeleton from piezoelectric
material and the second phase of which consists of isolated or connected with each other inclusions from piezo-
magnetic material. The first case according to the classification of R.E. Newnam corresponds to 3-0 connectivity
and the second case corresponds to 3-3 connectivity (closed and open inclusions from piezomagnetic material,
respectively).

Whereas the percentage of the entry of the second phase is relatively small, the model of cubic lattice appears to be
rather simple but at the same time adequate representation of the microstructure for such composite material. The
lattice consists of identical cells, or cubes, and some of these cubes are chosen at random to constitute the material
of the second phase. We would like to note that such model does not support the structure of the composite
connectivity (3-0 or 3-3).

For 3-0 and 3-3 connectivity types we use the special model built by the following manner [20]. The cube con-
structed by translation of identical solid cells along three directions is considered as a representative volume. Each
cell in its turn also represents a cube consisting of 10×10×10 cubic piezoelectric or piezomagnetic finite elements
with 8 nodes each. A connected skeleton with piezoelectric finite elements in the cube corners always exists in
the cell. The skeleton consists of a parallelepiped represented by its edges (linear dimensions are pointed out by
the randomizer) as well as of piezoelectric elements chains connecting the corners of the parallelepiped with the
corners of the main cell. The connecting piezoelectric finite elements chains are also generated by the randomizer.
The skeleton occupies 10 % of the cell volume. So, the maximum possible porosity that can be achieved in this
model runs up to 90 %. The representative volumes with large number of elements can be obtained by repetition
of procedures for creating cubic structures of 10× 10× 10 size along the three axes. In this case each structure of
10 × 10 × 10 size is generated randomly in the frameworks of the procedures considered above. Additionally, in
order to ensure smaller entrance of piezomagnetic material (up to zero) we have applied the following algorithm.
Two cells are chosen randomly in the representative volume constructed at the previous step. If at least one of
these cells is not a piezomagnetic material, then these cells are being linked by some arbitrary connected path. The
resulting set is then added to the previously built frame consisting of solid piezoelectric elements. After that we
calculate the current entrance of piezomagnetic material and compare it to the given entrance. If the calculated
entrance of piezomagnetic material is less than the given entrance, the step of the algorithm should be repeated,
i.e. again two cells should be randomly chosen in the representative volume, and so on.

In order to build connected structures in the cubic lattice it is possible also to use special algorithms and the
algorithms of the percolation theory that allow obtaining flowing clusters. A range of such methods (random
method, the initial concentration method, the DLA (diffusion-limited aggregation) method, Witten-Sander method,
the DLA ”growth from the plane” method, etc.) was implemented in the computer programs and analyzed in
[20, 21] in relation to porous piezocomposite materials. For solving static piezomagnetoelectric problems 33),
(34) with (5), (30)–(32) for heterogeneous two-phase composite material in the representative volume Ω we can
use the finite element technique, described in Sect. 3.

6 CONCLUSIONS

Thus, we have proposed an original model that describes the behavior of the magnetoelectric material, taking
into account the damping properties and surface effects at the nanoscale level. Magnetoelectric material here
is understood as a composite consisting of piezoelectric and piezomagnetic phases, and is used to describe the
theory of coupled piezomagnetoelectric medium with effective properties. In the particular case, when we neglect
the coupling with magnetic fields, this model describes the behavior of a well-known piezoelectric material with
damping properties and nanoscale effects.

We consider dynamic problems in quasistatic approximation for the electric and magnetic fields. The novelty of the
model consists in taking into account the damping properties, as well as surface phenomena which are important



at the nanoscale.

To describe the size effects, we use recently popular theory of surface stresses and its generalization to piezomag-
netoelectric media. Under this generalization, we also consider the surface electric and magnetic fields.

Another new feature is the account for the damping properties in the sense of a generalization of the conventional
for the structural analysis Rayleigh damping method for the electric and magnetic fields. We also added the terms,
describing the attenuation, in the constitutive equations for the surface mechanic, electric and magnetic fields.
When taking the damping into account, the basic idea was that for some relation between the damping coefficients
the method of mode superposition can be applied for transient and harmonic problems.

Examples of the finite element calculations for the case of piezoelectric bodies with surface effects previously
appeared in [17, 19]. For calculations of magnetoelectric bodies, the developed technology can be extended within
the same type of approaches. However, nowadays these approaches can not be used in practice, as there is not
enough experimental data on the surface properties of nanosized magnetoelectric bodies.

We also developed the theory of the effective moduli method for magnetoelectric composites with piezoelectric and
piezomagnetic phases. The basic statements were formulated for the average field characteristics that generalize
the approaches developed for the elastic and piezoelectric media. The special boundary electromagnetoelastic
problems for representative volume and necessary equations for the determination of the full set of the effective
moduli were obtained for magnetoelectric media with arbitrary anisotropy.
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