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Abstract. The one-dimensional coupled problem of linear thermoelasticity of a Nickel-Zirconia functionally 
graded thermal barrier coating, subjected to uniform thermal shock conditions on its upper surface is 
considered. With the proposed analysis we intend to investigate numerically the effect of the type of distribution 
of the FGM's properties on the thermomechanical response of the Nickel-Zirconia profile. The 
thermomechanical properties of the materials are assumed temperature-dependent. The properties of the FGM 
layer are assumed to vary in the axial direction according to the sigmoid function. A finite element code is 
developed for the numerical analysis of the transient stress field resulting from the thermal shock at the upper 
surface of the configuration. Time integration of the problem is based on the Implicit Euler Method. A 
parametric study follows to optimize the type of distribution of the thermomechanical properties of the FGM 
layer, which minimizes the magnitude of the generated stress wave. The effect of the temperature-dependency of 
the materials' properties is also discussed. 
 

1 INTRODUCTION 

Functionally Graded Materials (FGMs) are advanced materials that connect two different materials in 
composite configurations. Their properties vary gradually between the properties of those two materials. The 
continuous variation of their properties limits the magnitude of the local stress concentration at interfaces. FGMs 
are increasingly used in thermal barrier coatings [1-3]. 

Ceramic/FGM/Metal composite materials are commonly used as thermal coatings. In this contribution we 
investigate the thermomechanical response of a 3-layered Zirconia/FGM/Nickel half-space under thermal shock 
conditions. The governing equations are derived from the theory of fully coupled thermoelasticity. Under the 
assumption of plain strain conditions and uniform loading on the upper surface, the displacement and 
temperature fields become one-dimensional. The properties of the materials are considered temperature-
dependent. Several studies have been made about the thermomechanical behavior of functionally graded 
materials under thermal shock [4-6]. The authors of this contribution have studied this problem in the case of 
materials with temperature-independent properties and linear distribution of the properties of the FGM layer [6]. 
In the case of temperature-dependent properties we have a more realistic model. 

In this paper, the properties of the FGM layer vary from the properties of the Zirconia to the properties of 
Nickel according to the sigmoid function. A parametric study follows to numerically examine the effect of the 
spatial distribution of the properties inside the FGM layer. A Finite Element code is developed in Matlab [7] for 
the calculation of transient thermal stresses inside the configuration. The influence of the temperature-
dependency of the thermomechanical properties of the materials is also discussed. 

  

2 GOVERNING EQUATIONS AND NUMERICAL ANALYSIS 

2.1 Equations of fully coupled thermoelasticity 

Consider an elastic 3-layered Zirconia/FGM/Nickel half-space as shown in Figure 1 under thermal shock 
conditions. Initially, the configuration is undeformed, stress-free and has a uniform temperature T0 . Under the 
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assumption of temperature-dependent properties, the theory of fully coupled thermoelasticity leads to the 
following system of equations at a point with cartesian coordinates x  and at time t  [8]: 
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where  ,   x  and  ,   x  are the Lame constants,  ,i iu u t x  are the components of the 

displacement vector,  ,ij ij   x  is the thermal moduli tensor,  , t  x  is the variation of temperature, 

 ,   x  is the density of the material,  ,ij ijk k  x  are the heat conduction coefficients and  ,v vc c  x  

is the specific heat capacity under constant volume. A comma indicates partial differentiation with respect to a 
spatial variable and a dot above a variable indicates differentiation with respect to time. 

Under the assumptions of plain strain conditions and uniform loading the displacement field and the 
variation of temperature field become one-dimensional. Eqs (2) are simplified as follows: 
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where x  is the spatial variable along the thickness of the layers. 
The xx  component of the stress field is given by [8]: 
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Subsequently, the velocity  , uv v x t t
    is introduced as a new depended variable and the following 

variables are introduced for normalization purposes: 
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where    2 /w Nc x     is the elastic wave velocity,    / v Nk c x      is the thermal diffusivity and 

Nx  is a reference point inside the Nickel layer. 

Hence eqs (2) take the following normalized form: 
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Due to the dependency of the thermomechanical properties on temperature, eqs (5) describe a nonlinear 
problem. The normalized form for the xx  component of the stress field is given by: 
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where  N Nx  . 
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2.2 Finite Element analysis and time integration 

Application of the Finite Element Method [9] to eqs (5), using 2-node linear shape functions, leads to the 
variational formulation of the problem: 
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where , ,w w w H 1
1 2 3  are the weight functions. 

Based on eqs (7) the local matrix equation of a finite element is formed. The global matrix equation of the 
problem under consideration is constructed by summing up all the local elemental matrices: 

  
 C y K y f  (8) 

 

where C , K  and f  are derived from eqs (7) and y
 
is the vector of the unknowns. 

The Implicit Euler Method [10] is used for the time integration of eqn (8). Let ny  be the unknown vector at 

time step n . Then the Implicit Euler Method yields: 
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where ht  is the time step used. 
 

 

Figure 1: The 3-layered composite configuration under thermal shock conditions at the upper surface 
 

3 RESULTS 

3.1 Description of the problem 

The 3-layered elastic half-space is initially at uniform temperature 0 300 KT  . The normalized thickness of 

each layer is equal to 1 0.5t   for the Zirconia layer, 2 1.5t   for the FGM layer and 3t    for the Nickel layer, 
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as shown in Figure 1. The thermomechanical properties of Zirconia and Nickel as a function of temperature T  
are shown in Table 1 and 2 respectively [11]. At time 0   the normalized temperature of the upper surface of 

the half-space suddenly increases by 0 1  . Ιn the subsequent analysis, the distribution of the transient stress 

field is studied.  
The problem described above is one-dimensional. A finite element code for the numerical analysis of eqn (8) 

is built in Matlab. The authors of this paper have tested the accuracy of the code in previous work [6]. Due to the 
nonlinear nature of the problem under consideration, the matrices C  and K  have to be recalculated at each time 
step. In the following applications, 2400 finite elements and 2000 time steps are used in order to ensure a 
satisfactory convergence. 

 

Density   (kg·m-3) 4400  

Specific heat capacity vc  (J·kg-1·K-1) . . . .T T T       7 3 4 2 11 71 10 6 19 10 7 95 10 308 093  

Thermal conductivity k  (J·m-1·K-1·s-1) . . .T T    6 2 30 116 10 0 21 10 2 8936  

Elasticity Modulus E  (GPa) . . .T T     6 2 38 1 10 50 3 10 65 819  
Poisson’s ratio   .0 25  

Thermal expansion coefficient a  (10-6·K-1) . . .T T    6 2 312 7 10 18 9 10 13 527  

Table 1 : Thermomechanical properties of Zirconia 

Density   (kg·m-3) 8900  

Specific heat capacity vc  (J·kg-1·K-1) . .T 0 5023 302 022  

Thermal conductivity k  (J·m-1·K-1·s-1) . . . .T T T       7 3 4 2 21 876168 10 2 126458 10 2 717507 10 97 62  

Elasticity Modulus E  (GPa) . . .T T     5 2 21 508946 10 4 161243 10 234 8317  
Poisson’s ratio   .0 30  

Thermal expansion coefficient a  (10-6·K-1) . .T 21 143460 10 9 5696  

Table 2 : Thermomechanical properties of Nickel 

3.2 Distribution of the thermomechanical properties 

The through thickness variation of the properties of the FGM layer is assumed to follow the sigmoid function 
in terms of parameter p  [12]. As a result of the temperature-dependency of the thermomechanical properties of 

Zirconia and Nickel, the distribution of the properties inside the half-space is not static. The expression for the 
modulus of elasticity as a function of depth   and temperature T  is given by: 
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where  ZE T  and  NE T  are the modulus of elasticity of Zirconia and Nickel respectively at temperature T . 

For 1p   eqs (10) express the linear variation. 

The expressions for the other thermomechanical properties are similar. In the numerical analysis the 
displacement, velocity and variation of temperature fields are derived at each time step. The distribution of the 
properties of Zirconia and Nickel are calculated based on equations of Table 1 and 2 and the variation of 
temperature field. The properties inside the FGM layer are then estimated according to eqs (10). Figures 2-4 
show the distribution of selected thermomechanical properties for several values of the parameter p . 
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Figure 2: Distribution of the specific heat capacity at dimensionless time 4 
 

 

 

Figure 3: Distribution of the modulus of elasticity at dimensionless time 4   

 

  

Figure 4: Distribution of the thermal expansion coefficient at dimensionless time 4 
 

Figures 5-7 show the distribution of the same properties for 3p   at various time points. The distribution at 

time 0 
 
signifies the case of materials with temperature-independent properties. As time increases, the 

temperature inside the half-space rises. As a result, the specific heat capacity increases and the modulus of 
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elasticity decreases, Furthermore, the thermal expansion coefficient inside the Zirconia layer decreases and the 
thermal expansion coefficient inside the Nickel increases. 

 

 

Figure 5: Distribution of the specific heat capacity for 3p 
 

 

 

Figure 6: Distribution of the modulus of elasticity for 3p   

 

  

Figure 7: Distribution of the thermal expansion coefficient for 3p 
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3.3 Transient stress field 

Figures 8 and 9 show the time evolution of the normalized stress at position 0.25   and 0.5  , 
respectively, for various values of the parameter p . The position 0.25   is located inside the Zirconia layer, 

while the position 0.5   is located at the interface between the Zirconia and the FGM layer. The two Figures 
show the main compressive stress wave that travels through the half-space, followed by less intense stress waves 
due to the reflection at the interface of between the Zirconia and the FGM layer and the upper surface. Zirconia, 
as a ceramic material, and the interfaces in general are susceptible to tension stresses and fatigue. Therefore, the 
criteria for the selection of the optimal type of distribution is the minimization of the intensity of the repeated 
tension waves at those two positions. 

According to Figures 8 and 9, the generated tension waves are smoother when 1p  . 
 

 

Figure 8: Time evolution of the normalized stress at dimensionless depth 0.25 
 

 

Figure 9: Time evolution of the normalized stress at dimensionless depth 0.5 
 

 

3.4 Effect of the temperature-dependency of the thermomechanical properties 

In this section we discuss the effect of the temperature-dependent properties on the magnitude of the 
generated waves. Figures 10 and 11 show the time evolution of the normalized stress at position 0.25   and 

0.5  , respectively, when 1p   and for the cases of temperature-dependent and temperature-independent 

properties. It is clear that the assumption of materials with temperature-independent properties leads to 
conservative results, since the calculated magnitude of the initial stress wave is overvalued by approximately 
30%. That is expected, since the modulus of elasticity of the materials with temperature-dependent properties is 
reduced, thus resulting in "softer" materials. It is concluded that when the temperature-dependency of the 
thermomechanical properties of the materials is not taken into account, the thermal shock resistance of the 
configuration is  underestimated. 
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Figure 10: Time evolution of the normalized stress for 1p  , at dimensionless depth 0.25 
 

 

 

Figure 11: Time evolution of the normalized stress for 1p  , at dimensionless depth 0.5 
 

 

4 CONCLUSIONS 

In the this contribution, the one-dimensional problem of coupled thermoelasticity of a 3-layered Zirconia-
FGM-Nickel half-space subjected to uniform thermal shock boundary conditions on the upper surface is studied 
numerically. The partial differential equations that describe the problem are presented and the finite element 
method with linear 2-node shape functions is applied, resulting in a ordinary differential equation system with 
respect to time. The Implicit Euler method is used for the time integration of the resulting system. A matlab 
finite element code is used for the numerical analysis of the problem described above and the calculation of the 
generated stresses. The materials of the half-space are assumed to have temperature-dependent 
thermomechanical properties, thus the problem under investigation is nonlinear. The properties of the FGM 
layer are assumed to vary in the axial direction according to the sigmoid function with parameter p . 

A parametric study shows that the reflected tension stress waves are inside the Zirconia layer and at the 
interface Zirconia/FGM are minimized for 1p  . This is important for composite thermal coatings with 

ceramic/metal materials, due to the vulnerability of the ceramic material and to tensile stresses and fatigue. A 
comparative study also indicates that the assumption of temperature-independent properties is conservative: 
when the effect of temperature on the thermomechanical properties of the materials is taken into account, the 
calculated maximum compressive stress is reduced by 30%. 
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