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Abstract. The solid structure of engineered cement-based matrices comprises a continuous network of flaky
dendrites emanating from partially hydrated cement grains. In the paper, the microscopic mechanical behavior
of cementitious gel is approximated using a discrete model obtained by random generation of the spatial
location of cementitious grains in the solid and a random network of dendrites, with statistically random
properties. Calibrated to fit the macroscopic physical characteristics of the matrix (density and mean pore size),
the model reproduces several known macroscopic behavioral traits of cementitious materials, including the
characterigtics of the yield and failure surfaces under the states of plane stress/strain. The measured properties
of cement-based composites are successfully reproduced, demonstrating that computational simulation of the
mechanical behavior of the material under various stress states is possible, using information from few
inexpensive laboratory tests. This emerging framework employs a discrete approximation of the material
microstructure, thereby departing from the smeared crack, smeared strain continuum mechanics approach with
several advantages.

1 INTRODUCTION

For several years the behavior of concrete masehias been modeled using the established frameofork
continuum mechanics. This is based on the concdptfinitesimal stress and strain, and relieglonexistence
and quantification of values for the Lamé constdatg. the modulus of Elasticity and Poisson’sojaith order
to describe the relationship between the stresstath tensors. However, the image of cementtioaterials
in the microscope reveals that the assumption aofimaity is grossly inaccurate — the solid struetwf the
material is amorphous comprising gel macromolec(®$-H)—i.e., products of cement hydration thatram
various discontinuities and enclosures (e.g. Ca€rtals and other mineral formations as well ggregates,
[1-2]). The macromolecules form sheets or stitlket emanate folding randomly in space, generatorgpof
various sizes owing to the void between them, thepresenting a great internal surface area. Becatithis
random solid structure these materials are disptigpately weak in tension, exhibiting easy ruptaed
cracking in directions normal to tensile stresddfe while they present great robustness and dtrety
compression [3]. For this reason, cementitiousent are incompatible with the constitutive framoek of
elasticity, be it linear or nonlinear, as it is lizad repeatedly in the poor performance of nunar{€inite
Element) approximations of the continuum mechaajgoach.

In the last years there has been an emerging éfftine area of concrete modeling to depart fromticoum
mechanics approaches towards a so-called discretkelimg framework which is more appropriate for sem
brittle materials such as soils, built on the shedaparticle modeling approaches. Particles apelated either
as randomly sized spheres in contact or as elernéattattice ([4—7]); force transfer and solidestgth occur by
interaction of the particles (i.e. spheres) in achtor by bending/axial stretching of the lattidengents. A
disadvantage of the particle modeling approachifighat the sphere interactions occur only undsaring or
frictional contact, whereas they cannot transfasiten unless special contact elements are intratwsupply
cohesion to the numerical model.
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Recently, a third alternative option for discretedeling, which is particularly targeted towards eeitious
materials has been developed by the authors.idrmpproach reference is made to the actual steictithe gel
hydrates which, rather than spheres in contactebeesemble a system of dendrites, that is cetrmri
hydrates that grow outwards from a partially hyddatement grain. A simplistic idealization of thisterial
form is given in Fig. 1(a) from [8]. A starting i in this approach is a random generation of g@itieus
grains (source nodes, SN), which defines the paihtgrowth of cement hydrates (uniform distributifsam a
statistic point of view); similarly a random gentwa of target nodes (TN) defines the orientatidnthoe
hydration products which extend from the SN toTi(see for example Fig. 1(b), [9-10]). The tatamber of
dendrite branches that grow outwards from the cditiers grain is a random variable; similarly rando
variables are the size of the branches and theesbftheir cross section, since a range of podstsilfrom
circular to elliptical shapes are randomly selected

In this manner a study region is defined, ternteel box having dimensions in the order of a few
micrometers, since the basic length measuring bigries the mean hydraulic distance (MHIB3), which is a
measure of the mean radius of pores in the gelptines being modeled as circular or rectangul#s. slThe
MHD is calculated as twice the ratio of the totehgorable water content held in the gel (whichngstimate of
the available void space), divided by the inteswaface area of the gel (per unit volume), bothntjtias being
functions of the water to cement ratio, {#—2]. The MHD, which is the order of a few nareters, is the
fundamental length measure in the proposed methblierefore, the size of the study region as welthas
lengths of the branches that represent the hydeasegiven all in multiples of MHD. Denser regicer® near
the cement grain, being represented by stocky @esdhat occur on the grain making a bulky magkey are
part of the force path since they converge to #maent grain which is represented as a nodal pwitit egrees
of freedom) in the model. The total solid volunmanprises the collective volume of all the dendbitanches.
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Figure 1. (a) Idealization of packing of cement hydration gurots (from [8]). (b, c¢) Definition of mesh for
analysis on a discrete 24MHDx24MHD square spaceramadning to produce a 15MHDx15MHD central region
that is the studyox. Source nodes (diamonds) and target nodes (®)rale shown in (b) and the branches
(lines) generated between them are shown in (die Bodes and solid blue branches lie inside the Hdeed
nodes and dashed red branches lie outside the Bneen branches lie half inside (solid) and halfsioe
(dashed) the box; new boundary nodes (green) aegext for these on the perimeter of the box.

In a previous study a detailed evaluation of thelefis performance was carried out based on itstylvd
reproduce responses that are typical of concrbatiavior under uniaxial tension and compressiojy [19]). It
was found that, with very few input values, the ilzan features of concrete’s behavior under meotenibad,
such as, an almost proportional relationship betwa&#dfness and density, nonlinear stress-straivs lavith a
softening branch beyond the peak, a compressigagttr that is much higher than the uniaxial terstilength, a
consistent value of Poisson’s ratio and the ditatiehavior with progressive damage are reprodusmigtafully
by the model. In this stage the model is usedudysthe behavior of concrete under plane strebe -ebjective
is to estimate, by applying different combinatiasfsboundary conditions in the two principal axestbé
coordinate system, the failure envelopes that ciberiae the material model — again, not by feedimgm
through a preconceived plasticity or nonlinear tgdayg framework, but rather, to obtain them as theput of
the model runs under specific boundary constraiftarameter of study is the ratio of uniaxial sgtenof the
dendrite material in compression (crushing) angiten(fracture). Results are presented in the fofrniaxial
failure envelopes expressed in the stress anchstpgice. The validity of the estimations is suehithrough
comparison with known experimental behavior of cetitieus materials under biaxial stress statesh siscthe
familiar biaxial failure envelope of Kupfer and G#e[11] shown in Fig. 2 [12], as well as the effet
compression softening due to orthogonal tensil@rsrand the enhanced deformation capacity of cétioeis
materials owing to confinement.
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o2t Equation approximating the Kupfer-Gerstle Biaxiaill&re envelope in
i - the third quadrant:

02

(ﬂ1+ﬁz)z_ﬂz_3-6561: 0 (1)
where = o:/f. and o= o./f;, f. is the concrete uniaxial compressive
strength, and 0a1>0, are the principal stresses (from [12]).

Figure 2: Biaxial Failure Envelope plotted in the stresaesm with
principal coordinates being the resultant stresghenbox, along the 1
and 2 axes, normalized with respect the uniaxielpressive strength of
the material.

2 GENERAL SPECIFICATIONS

2.1 A discrete representation of the cementitious gel

The model studies the box, which is the space techin the core of the region depicted in Fig. 1ic)}the
present study, the box is subjected to variougstat plane stress by applying displacements aefalong its
two principal directions; for reasons of numericahbility, most runs are displacement controlledboth
directions, the only exception being unidirectioleading in plane stress. Clearly the model magXended to
3D, however as is, it already requires great coatpirtal effort in order to produce a solution.

To generate the mesh, two uniformly distributeddman sets of nodes are generated and superimposed ov
square test domain, representing the partially dtgdr cement grains (source nodes, SN) and the t@ten
locations of crossing of dendrite branches (targetes, TN) — the TN being 3 times more dense tharSN.
The density of the SN is taken as MHDin 3-D it would be MHD®), and the MHD is taken equal touin. In
generating branches between SN and TN, not allifdessonnections are realized. Rather, the prdihaluif
realization of any branch is assumed independeritsofieighbors and exponential with probability sign
function p(¢) = exp(- ¢/MHD)/MHD and cumulative probability functioR(¢) = 1- exg(-¢/MHD), so as to

have the expectation of the cantilevering lengtbf developing branches equal to MHD. An arbitrengxim-
um branch length of 3MHD is also enforced.

The node and branch samples are taken over a migdr area than the square element considered in
studying the response under uniform loading (reféto hereon as the “box”), in order to ensure thatbox is
free of boundary artifacts and as representativawdrage conditions” as possible. So a typicalnegle case is
to generate a study area 24MHD square, whichrigrigd to a box of 15MHD square at the center ofsthdy
region. For branches that cross the boundaryeobdx, new nodes lying on the boundary are gergeiaterder
to provide an end point for the trimmed branché&slded nodes on the box perimeter are related tontaster
nodes, so that affine kinematics (macroscopic @esmnditions) may be enforced locally (as boundamndit-
ions on the box). The first master node (visudlias lying at the origin) is fully fixed and enfescfixity of all
negative faces in their respective normal direciomhe second master node (visualized as lyitigeabpposite
corner) is used to enforce states of uniform staggkstrain. Its last degree of freedom (the pldisement for
2D, the z- displacement for 3D) is used as therotlintg increment in simulation and is always dam@ment
driven, so that softening response may be model@d. each remaining degree of freedom one may apply
displacement or force (either constant or propodido that of the last degree of freedom). Anngve event
algorithm is used with constant strain incremexs= &,;/200 along the direction of displacement contrGin
each occasion, the last converged configuratioveseas the starting point for each new increm&he solution
uses the standard nonlinear system-solver of Mati@dewton with trust region) with default toleranog107°
in both displacements and loads.

From past results ([9], [10]) it has been surmisigat the cross sectional shape of branches istiaatri
variable having a marked influence on the resulBest performance was obtained when a random cross
sectional shape was assumed for the brancheshelpresent investigation, the cross section ofviddal
branches may be either circulal{rod networks) or elliptical with random aspect ratietlseen 1 and 100
(randomraspect-ratio networks, closer to physical reality). Note tltloading conditions where extension
(direct or transverse) predominates, differencesaverage response measures between samples ol all-r
specimens and samples of random-aspect-ratio spesiare much smaller than differences betweenrspesi
within each sample; in fact, they fall below theeshold of statistical significance for unidirect# loading.
Such differences, however, become pronounced irpoession-dominated loading (i.e., in the third qaadin
stress space of the biaxial failure envelopesjthAretic results obtained are consistent with tiiservation.

Material properties for the dendritic material: tches are idealized as linear elastic elements roéde
homogeneous and isotropic material of modl#ys= ay,i/eps, Which rupture in tension at straify and stressyy.
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Strain, stress and stiffness are given as multiples, oy, andE;, respectively. Branches may fail in compres-
sion by crushing or by Euler buckling (followed lioth cases by brittle response) — whichever pre\aslthe
controlling mode. For the purposes of force/séffs state determination and in estimating Euleklmgloads,
branches are treated as if they were cylindricdlawtrage” cross-section. Compressive failure tuslsing at
strain 1@y and stress 14 is allowed, but rarely occurs in simulation. histcase, which is used as benchmark
in the sensitivity study that follows, branch fads in compression are predominantly due to bugkliffhe
calculated biaxial failure envelopes obtained frfva model are studied parametrically by considetavger
values for the ratios of crushing to tensile sttbn(specifically 3), revealing that this strengtitio may
significantly influence the prevalent mode of detedfailure in compression with noticeable implicats on the
form of the failure envelopes.

In the present studyy,; = 10 and ey, = 10 mN/mn? = 10 MPa are used, yieldir,; = 100 GPa, all three
values within order of magnitude of measured prig@efor pure hydrate phases and for cement pasteafpol-
ated to zero porosity) reported in [1]. Previougiges have illustrated that scale effects cani¢paficant [10];
therefore, only results for boxes of the same dsiers may be quantitatively compared. The avebad@vior
of any sample of boxes of finite dimension is expddo be stiffer and stronger than the materiau$ated, but
it is hard to predict the dependence of simulatesults on box dimensions. Several runs of diffesize boxes
would be required to document this sensitivity.

The variability of the numerical results decreastmsnly with increasing box size [10], but memory
requirements and operation counts increase shdgilgywing roughly the square and the cube of th& bize,
respectively. In previous studies by the auth®slp], specimen dimensions of 24MHD x 24MHD (before
trimming) and 15MHD x 15MHD (after trimming, simtéal “box”) have given results that are reasonalige
to macroscopic behavior (in error by roughly 109%ew compared to results for specimens of doubldiriear
dimensions). These specific dimensions were chémeall specimens in this investigation. AbouOMB of
RAM is required for each specimen and computatiom@mall PC of 5 years (available in quantity ahtbw
cost anywhere in the world) takes about one hatfrie whole day (depending on the range of straiasneed
be imposed for the chosen type of loading).

2.2 Simulated Responseto Static L oading

Results discussed in this work in the following azaaphs concern exclusively 2D specimens, loaded
statically under enforced affine kinematics on twundary for planatress. Such loading would result in
stresses and strains along the axes of the bthe ihaterial was homogeneous and indifferent tentation; this
is indeed the case macroscopically for cement pasté would be the case asymptotically for boxemarteas-
ing dimensions; thus shear stresses and strainsoasidered parasitic (an artifact of the small diorensions)
and are ignored. All responses are parameterigethd driving principal strain magnitude and repdrias
functions of that principal strain value. Thisdisfined as the ratio of the displacement of therzsster degree
of freedom divided by the length of the specimele si

Some parameters specific to network generation wleosen a priori and kept constant for all runsnelsg
the ratio of TN to SN density (set to 3) and theximaim branch length allowed (set to 3MHD). These
parameters lead to specimens with material der@8%. Findings from past studies illustrate thabaninant
determining factor of alitress andstiffness measures of plain cement paste isrtiagerial density. By contrast,
strain measureslo not depend on material density. In the range of values #ratrelevant to applications, the
dependence of stress (and, hence, of stiffnesshaterial density is almost exactlynear. On this finding
numerical results obtained from the model are ireagent with experimental evidence. Thus, thectffef
specimen density on the results are removed (fuiwdtatistical significance) by non-dimensiondiiza (which
involves division of computed stress and stiffneesasures by the material density of the specimen).

Results are presented in the form of biaxial failenvelopes of non-dimensionalized stresses aathstr
(i.e., divided bypoy: andey;, respectively) that correspond to the first atteént of pealstress in either of the
principal axes of the coordinate system (i.e.,h® limit point beyond which failure would ensue andoad
control). More data points and larger samplesefach point would make for more reliable failure elopes.
Note that the coordinate system, representing reflleeprincipal stresses or strains acting on thedides along
x and y (or 1, and 2) defines four quadrants, nuethas follows: Q1 for tension in both axes, Q2témrsion in
axis 2 and compression in axis 1, Q3 for compressidoth axes, and Q4 for tension in axis 1 andpr@ssion
in axis 2. Reference to this nomenclature wilhteede in the forthcoming sections.

3 FAILURE ENVELOPES

3.1 General Framework

The failure envelopes produced in this study diffethe choice of branch cross section (eitheruténcor
elliptic with random aspect ratio) and in the prese of nano-reinforcement in the form of multi-wedirbon
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nanotubes (either none or targeted at 0.1%, [14-1K] view of the findings in preceding studiesttwihe
proposed model [9-10], differences between faileneelopes are expected to be primarily caused by th
difference in branch cross-section and to be mosaqunced in the compression-dominated part (Q3).

The introduction of nano-reinforcement is primaiifended for future investigation of its effect post-
limit-point behavior after tension dominated fadufwhere branch cross-section shape makes littlaoto
difference). Note that based on the experiencé wie numerical model to this point [9], reinforgithe
cementitious material with the addition of MWCNTsthe small amounts commonly used in practice Han t
range of ~0.1%) increases the limit stress andnsthithe resulting nano-reinforced paste by ldsntthe
statistical variability of the results comparedf14]. Reinforcement of this type seems to sigaifity increase
only the residual load bearing capacity past thatlpoint, thereby improving the energy absorptafnthe
cementitious structure.

All previous findings are known with certainty onlyhere the global failure mechanism is dominated by
cascading failures of branches due to tension yndinection. Conditions near hydrostatic comprassiequire
further investigation. In particular, it is necassto investigate the effect of whether branchlufas in compres-
sion are predominantly due to buckling or to croghi

3.2 Primitive data and failure envelopes

Principal results, i.e., the absolutely larger stes and strains at the limit points, are presewidd 2.5
significant digits (2 digits and one rounded torS0p. The same approach is applied to the abdplatealler
stresses and strains at the limit points, but withatroducing more decimal digits.

Thelocation of limit points (in strain space) is more sengtihan theivalue (in stress space) to the details
of post-processing filtering, as should be expectddhe particular filtering employed here aims tnpve
“abrupt” slope changes (signs of numerical divecg@nand works well for removing “local” divergences
without flattening out the response. A toleranaeameter involved in the algorithm is set at 1.5%4&ll cases
and is only reduced (to 1% or 0.5%) if visual ingmn shows that local numerical spikes remairhim icinity
of the limit point of interest.

The C splines, used to produce smooth failure enveloges highly sensitive to the details of the values
entered. For this reason (i.e., to get betteritgpkailure curves), secondary stress and stradimegaare rounded
independently of primary ones, even though the dedroff values may slightly violate loading constts (i.e.,
the ratio ofe, to ¢;). Even so, small errors in the data become uredaattifacts in the €splines, since the
“average points” interpolated have statistical abitity that may exceed 20%.

Simulation in 2D for compression-dominated loadaunditions (Q3 in stress space) should overestimate
limit-point stresses and strains, because it irsglieplane compressive failure of many dendritdseneas out-
of-plane tensile failure of dendrites should plagignificant role in actual 3D response. Thus, fhidure
envelopes in the compression dominated zone isssgace are not expected to represent exactlytioosdof
zero transverse stress£0). This effect is particularly pronounced inad networks, where the ensemble of
branches is more resistant to compressive failuie.fact, the simulated failure point in 2D equaidal
compression for all-rod networks with crushing-¢mgile strength ratio set at 10 is so implausibk it is
shown in Figure 3 as a black crossed circle, baobtaused in interpolations for the failure envelsp

3.3 Reaultsfor high crushing strength (10 timesthe fracture strength)

These results are grouped in Table 1, for the oasmreinforced paste simulated with branches afutar
cross section, and in Table 2, for the case ofliigeinforced paste simulated with branches ofian elliptical
cross section. The resulting failure envelopesshoavn in Figures 3 and 4, respectively. Wheradhdailures
due to direct or indirect extension dominate (pa&eé part of Tables 1 and 2), the quality of theultssis
excellent, characterized by low noise (usuallyefitig with 1.5% tolerance suffices), limited vaildp (from
5% to 15%), and textbook failure envelopes (seerfeig3 and 4). Furthermore, in tension-dominagspaonse
no statistically significant difference is observaetween all-rod networks (Table 1 and Figure 3) endom-
aspect-ratio networks (Table 2 and Figure 4). 3thess failure envelope in Q1, Q2, and Q4 is aiitg@lar to
the well known Kupfer-Gerstle envelope [11, 124, plarticular it reproduces the almost constantiieestrength
in the Q1 (which is an experimentally establishext)fand the nearly linear variation in Q2 and Q4.

In the Q3 of the stress space, simulation resuktsraore noisy (filtering with tolerance 0.5% is eoft
required) and more variable (from 10% to 30%). r€he also significant difference (up to 20%) betwdailure
envelopes produced for physically implausible ad-metworks (Figure 3) and more plausible randopeets
ratio networks (Figure 4), as expected.
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Figure 3: Failure envelopes for 15MHDx15MHD specimensptdin paste with branches afrcular cross
section and of crushing strengt times the fracture strength in non-dimensionalized @sst space and
b) strain space. All envelopes are traced bydashed) and ‘qQdotted) splines. The Kupfer-Gerstle envelope is
plotted as a black solid lindote: For e,=¢1<>05=07 in compression, simulated points of maximum stress are
shown as crossed circles, but are not used in interpolation.
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Figure 4. Failure envelopes for 15MHDx15MHD specimens ghtly(~0.1%) nano-reinforced paste with

branches oélliptical cross section (random aspect ratio) androshing strengtiiO times the fracture strength
in non-dimensionalized a) stress space and &insspace. Both envelopes are traced bydashed) and €

(dotted) splines. The Kupfer-Gerstle envelopdasted as a black solid line.

Simulated loading under full displacement contra #,/e;.=—0.5 reproduces almost exactly the point of
apparent incompressibility obtained for simulateddirectional loading (see also [10]), in agreemaiith
experiment [18]. Passage through that point, hewesg not followed by immediate failure (as in ttase of
unidirectional loading), since material disinte@gratis prohibited by the imposed strain ratie;. For many
nearby loading conditionsf{¢; from —0.5 to 0) paths to failure pass near thentpe+0.5 of unidirectional
loading, and it is there that a significant numbé&ispecimens exhibit global divergence (numerieélufe to
maintain the imposed./s;). Furthermore, specimens that avoid divergendebéxextended plateaus (rather
than well localized limit points) and fail at wigellisparate strains (anywhere from:30 above 5y). All this is
borne out by the failure envelopes in strain spakewn in Figures 3(b) and 4(b), which have eackxensive
segment in radial direction and of slope exact® 1/

The actual failure envelopes arising from simulatiesults for high strength against crushing (hfes the
strength against fracture), and especially thosegiodom-aspect-ratio networks, are like distogetygons and
are reminiscent of Tresca failure criteria, moretipent for composite materials. Hence, it is rssegy to
investigate how the shape and scale of these gre®kre affected by the chosen strength ratio.
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Table 1. Non-dimensional stress and strain data for 2D rfailenvelopes of 15MHDx15MHI[plain paste
specimens with branches @fcular cross section and of crushing strentfiitimes the fracture strength.

N n L oading &oleps &1lent a2l (poy) o1/(poyy)
8 0 £1=¢> [+0.400] 15% | [+0.400] 15% | [+0.100] 17% | [+0.100] 17%
8 | 0| e=ef2 | [+0.535]9% | [+0.265]9% | [+0.110] 11% | [+0.085] 11%
8 | 3 | &=el4 | [+0.595]6% | [+0.150]6% | [+0.110] 14% | [+0.065] 13%
5 | 0 =0 [+0.620] 7% 0 [+0.110] 7% | [+0.040] 7%
8 | 0 | e;=—=J4 | [+0.665]9% | [-0.165]9% | [+0.110] 7% [0.000]
10 | 1 =0 [+0.670] 7% | [-0.225]9% | [+0.110] 10% 0
14 | 0 | e;=—J2 | [+0.700]5% | [-0.350]5% | [+0.105] 15% | [-0.025] 19%
8 | 2 | e1=—3.J4 | [+0.720]8% | [-0.540]8% | [+0.090] 10% | [-0.065] 17%
10 | 1 | e=—, | [+0.660]20% | [-0.660] 20% | [+0.075] 10% | [-0.075] 10%
8 | 0 | e,=—3/4 | [+0.670]6% | [-0.890]6% | [+0.070] 13% | [-0.125] 7%
o || L 0 [+1.00] 20% | [-1.90] 7% . [-0.275] 7%

1 2 [+0.90] 11% | [-1.85] 10% [-0.265] 7%
8 | 1 o | [¥260112% | [-5.25]12% | [-0.175] 22% | [-0.555] 17%
14 | o | T [+0.90] 7% [-1.85] 8% [0.000] [-0.265] 8%
8 | 1 | er=—/4 | [+1.4] 15% [=5.6] 15% [<0.25] 25%|  [-0.65] 25%
5 | 1 ,=0 0 [-5.40] 6% [<0.375] 6% [-0.720] 11%
8 6 &o=e1/4 insuff.data insuff.data insuff.data insuff.datz
8 | 3 | e=el2 [-2.00] 13% | [-4.00] 13%| [-0.530]12%  [-0.655] 7%
8 | 4 — [-3.40] 10% | [-3.40]10% | [-0.715]25% [-0.715] 25

Table 2:

Non-dimensional stress and strain

(~0.1%)nano-reinforced paste specimens with
crushing strengthO timesthe fracture strength.

data for 2D ffailanvelopes of 15MHDx15MHD of lightly
brancheslbifptical cross section (random aspect ratio) and of

N n Loadin g 82/£bf 81/£bf O'g/(pd'bf) 0'1/(/)O'bf)
710 1= [+0.445] 7% | [+0445] 7% | [+0110]8% | [+0.110] 8%
8 | 1 | &=el2 | [+0.525]9% | [+0.260] 9% | [+0.115]8% | [+0.085] 9%
7 | 1| &=eld4 | [+0.555] 9% | [+0.140] 9% | [+0.115] 13% | [+0.065] 13%
8 | 2 =0 [+0.595] 3% 0 [+0.115] 9% | [+0.040] 10%
7 | 0 | e=—,J4 | [+0.670] 15%| [-0.165] 15%| [+0.115] 9% | [+0.010] 23%
15| 0 0,=0 [+0.670] 8% | [-0.220] 13%| [+0.115] 11% 0
15 | 1 | e=—,2 | [+0.700] 10%| [-0.350] 10%)] [+0.110] 10% | [-0.025] 15%
20 | 2 | &=, |[+0.740] 15%)| [-0.740] 15%]| [+0.085] 15% | [-0.095] 20%
5| 2 5 [+1.00] 22% | [-2.05] 9% . [<0.275] 8%

2 2 [+1.00] 10% | [-2.00] 10% [<0.270] 9%
8 | 1 — o | [¥225]6/% | [-4.50]6% | [-0.125]6% | [-0.415]5%
15 | o | % [+0.95] 8% | [-1.90] 8% [0.000] [<0.265] 13%
7 | 2 | e=—J4 | [+1.05]18% | [-4.20]18%)| [-0.165]24% [-0.500P41
8 | 5 ,=0 0 [<4.10] 1% | [-0.275]10% [-0.555] 10%
7 | 1| e=edd | [-0.95]15% | [-3.80]15% [-0.390] 17% [-0.590p44
8 | 3 | &=ed2 | [-1.75]5% | [-3.50]5% | [-0.455]8%  [-0.560] 8%
7 | 3 e=er [<2.80] 15% | [-2.80] 15%| [-0.505] 14%  [-0.505] 14%

3.4 Resultsfor low crushing strength (3 timesthe fracture strength)

Results for low branch crushing strength set ay @n(rather than 10) times higher than the corredpm
fracture strength and subject to various typesoafing, are listed in Table 3 and shown (with thens
conventions as before) in Figure 5 for all-rod rat. The same is done for lightly reinforced ramdaspect-
ratio networks in Table 4 and Figure 6. Noticet e compressive stresses and strains listed lrodnsare
much smaller than those for high branch crushinength. In Figures 5(a) and 6(a), the Q3 parhefKupfer-
Gerstle envelope (Eq.1) corresponding to the streimguniaxial compression is shown again as akbsatid
line and is matched very closely by the numerieautts.

Almost all differences between the two sets of data statistically insignificant. Furthermore, &dllure
envelopes appear convex, which is not the casaifdr crushing strength. Tension-dominated respoase
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proven independent (to within statistical significa of the data) of branch aspect ratio (if physigalausible)
and of nano-reinforcement (if “light”), again aspexted. Furthermore, the reduction of branch déngsh
strength by 70% causes a reduction in the unidimeat compressive strength of networks by only 1842 a
fact that reaffirms the predominance of transvergension in the failure mechanism.
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Figure 5: Failure envelopes for 15MHDx15MHD specimen®lain paste with branches efrcular cross
section and of crushing strengghtimes the fracture strength in non-dimensionalized ®gsst space and

b) strain space. Both envelopes are traced’g@hed) and ‘Qdotted) splines. The Kupfer-Gerstle envelope
is plotted as a black solid line.
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Figure 6: Failure envelopes for 15MHDx15MHD specimens aftly(~0.1%) nano-reinforced paste with
branches oélliptical cross section (random aspect ratio) andro$hing strengtl times the fracture strength in

non-dimensionalized a) stress space and b) stpEine. Envelopes are traced By(@shed) and Q(dotted)
splines. The Kupfer-Gerstle envelope is plotted afack solid line.

In uniaxial compression, there is noticeable dédfere in both stress and strain space between ihe qfo
limit stress (at lower strains) and the point opa@nt incompressibility (at higher strains). Twe points are
not completely unrelated (in our earlier investigas of all-flake networks [10] they were found ddfer by
more than 30%), but they are not statistically taeh either (they differ by less than 10% for @t networks
and by about 15% for random-aspect-ratio networks).

The lowered crushing strength appears to rendégriificant the effects of random aspect ratio cdirirh
cross-sections on Q3 responses. The use of amaadpect ratio should clearly (if not dramaticatiggiuce Q3
strength; since no such trend is observed in thelts there must be a counterbalancing strengipesiifect,
due to the presence of light nano-reinforcementhin case where such is considered. Besides clamgrol
material disintegration and maintaining higher guesak stresses, light nano-reinforcement appearsoice the
attainment of peak stress to slightly lower straansl the occurrence of apparent incompressibititglightly
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higher strains (due to sustained confinement, soalize this effect compare Tables 3 and 4). Thesteeffects
are not crisply visible, due to the high statidticariability of the results.

Table 3: Non-dimensional stress and strain data for 2iraienvelopes of 15MHD x 15MHD qlain paste
specimens with branches@fcular cross section and of crushing strengtimes the fracture strength.

N n L oadi ng 82/£bf 81/£bf O'Z/(po'bf) Gll(pabf)
8 1 e1=6» [+0.435] 20% | [+0.435] 20% | [+0.100] 17% [+0.100] 17%
8 | 2 | e=ef2 | [+0.495]11% | [+0.255] 11%| [+0.110]12% | [+0.085] 11%
8 3 &1=65l4 [+0.560] 17% | [+0.140] 17% | [+0.105] 11% [+0.060] 13%
8 | 1 | =0 | [+0.630] 6% 0 [+0.115] 7% | [+0.040] 10%
8 | 2 | ei=eJd | [+0.620] 12% | [-0.155] 12%| [+0.110] 7% | [+0.010] 19%
8 | 1 | =0 | [+0.670]11% | [-0.220] 16%| [+0.105] 9% 0
7 | 0 | e;=—=J2 | [+0.700] 14% | [-0.350] 14% | [+0.095] 14% | [-0.025] 20%
8 | 1 | &= | [+0.710] 12% | [-0.710] 12%| [+0.080] 13% | [-0.095] 13%
T .-, | [#0858% | [-170]8% | [+0.010] 220% | [-0.210] 14%

0 | fT [+0.90] 7% | [-1.80] 7% [0.000] [-0.195] 20%
e | 4| ,_o | [0.70120% | [-1.70] 14% 0 [-0.235] 7%

5 2 [+0.90] 5% | [-1.85]5% [-0.215] 14%
8 | 3 | emeb | [+0.45]9% | [-1.70]9% | [-0.040] 33%| [-0.280] 179
8| 1| &=0 0 [-1.65] 12% | [-0.105] 18% |  [-0.280] 159
8 | 2 | e=eld | [-0.40]9% | [-1.55]9% [-0.165] 8% [£0.285] 9%
8 | 3| e=e/2 | [-0.70113% | [-1.45]13%| [-0.220] 15%|  [-0.295P46
8 | 0| e=e | [-1.20]12% | [-1.20] 12%]|  [-0.265] 15%|  [-0.265] 15¢

[=)

(=)

(=)

Table 4: Non-dimensional stress and strain data for 20urienvelopes of 15MHD x 15MHD of lightly

(~0.1%)nano-reinforced paste specimens with brancheslifptical cross section (random aspect ratio) and of

crushing strengtB times the fracture strength.

N n L oadi ng 82/£bf 81/£bf O'g/(po'bf) Gll(pabf)
8 2 £1=6 [+0.435] 14% | [+0.435] 14% [+0.110] 12% [+0.110] 12%
8 1 &1=0 [+0.610] 13% 0 [+0.115] 12% [+0.040] 13%
8 1 e1=—eol4 | [+0.625] 14% | [-0.155] 14% [+0.110] 12% [+0.010] 29%
8 2 01=0 [+0.665] 10% | [-0.220] 14% [+0.110] 9% 0
8 1 £1=—€2 [+0.695] 10% | [-0.695] 10% [+0.085] 12% [-0.090] 12%
8 1 =0 [+0.65] 14% [-1.65] 8% 0 [-0.230] 9%

2 2 [+1.00] 10% | [-2.00] 10% [-0.205] 12%
8 2 &,=—61/4 [+0.50] 10% [-1.95] 10% [-0.050] 24% [-0.280p46
8 2 &,=0 0 [-1.65] 4% [-0.110] 12% [-0.295] 8%
8 0 £,=¢61 [-1.20] 9% [-1.20] 9% [-0.275] 12% [-0.275] 12%

4 CONCLUSIONS

Failure envelopes for cementitious pastes are eerivsing a recently developed model of the material

microstructure that uses a random lattice of hydrajrowing out of a statistically uniform distrimnt of

partially hydrated cement grains.

Although theigagmodeled extends but a few micrometers in dize,

mechanical behavior obtained under plane stress@d through displacement control is thoroughlysistent
with the experimentally derived failure envelopesdement-like materials such as the Kupfer & Gersiaxial
failure envelopes. Results are presented in tkestind strain space, enabling the observatiog@nfdmation
of familiar phenomena such as (a) the increasemhgti of the material under biaxial compression guthe
confining action imparted by lateral restraint, {bg increased resilience and fracture energy ofecditious
materials reinforced with CNTs[14-17], (c) the effef compression softening which refers to theuotion of
compressive strength in the presence of transvens#le strain. The most important aspect of thegevioral
results is that they are obtained as calculategubutf the analytical model, using as input a mummnumber of
material variables and no preconceived expressisn® the expected behavior; reproduced phenonieta t
characterize the behavior of cementitious mateiadide but are not limited to the apparent ldtdifation of
compressed material beyond the peak, near incosipildég at the uniaxial compression limit point, a
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reasonable ratio of compressive to tensile respoasd the familiar characteristics of the biaxiallure
envelope.
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