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Abstract. The solid structure of engineered cement-based matrices comprises a continuous network of flaky 
dendrites emanating from partially hydrated cement grains.  In the paper, the microscopic mechanical behavior 
of cementitious gel is approximated using a discrete model obtained by random generation of the spatial 
location of cementitious grains in the solid and a random network of dendrites, with statistically random 
properties.  Calibrated to fit the macroscopic physical characteristics of the matrix (density and mean pore size), 
the model reproduces several known macroscopic behavioral traits of cementitious materials, including the 
characteristics of the yield and failure surfaces under the states of plane stress/strain.  The measured properties 
of cement-based composites are successfully reproduced, demonstrating that computational simulation of the 
mechanical behavior of the material under various stress states is possible, using information from few 
inexpensive laboratory tests.  This emerging framework employs a discrete approximation of the material 
microstructure, thereby departing from the smeared crack, smeared strain continuum mechanics approach with 
several advantages. 
 
 
1 INTRODUCTION 

For several years the behavior of concrete materials has been modeled using the established framework of 
continuum mechanics.  This is based on the concepts of infinitesimal stress and strain, and relies on the existence 
and quantification of values for the Lamé constants (e.g. the modulus of Elasticity and Poisson’s ratio) in order 
to describe the relationship between the stress and strain tensors.  However, the image of cementitious materials 
in the microscope reveals that the assumption of continuity is grossly inaccurate – the solid structure of the 
material is amorphous comprising gel macromolecules (C-S-H)–i.e., products of cement hydration that entrap 
various discontinuities and enclosures (e.g. Ca(OH)2crystals and other mineral formations as well as  aggregates, 
[1–2]).  The macromolecules form sheets or sticks that emanate folding randomly in space, generating pores of 
various sizes owing to the void between them, thereby presenting a great internal surface area.  Because of this 
random solid structure these materials are disproportionately weak in tension, exhibiting easy rupture and 
cracking in directions normal to tensile stress fields, while they present great robustness and strength to 
compression [3].  For this reason, cementitious materials are incompatible with the constitutive framework of 
elasticity, be it linear or nonlinear, as it is realized repeatedly in the poor performance of numerical (Finite 
Element) approximations of the continuum mechanics approach. 

In the last years there has been an emerging effort in the area of concrete modeling to depart from continuum 
mechanics approaches towards a so-called discrete modeling framework which is more appropriate for semi-
brittle materials such as soils, built on the so-called particle modeling approaches.  Particles are modeled either 
as randomly sized spheres in contact or as elements of a lattice ([4–7]); force transfer and solid strength occur by 
interaction of the particles (i.e. spheres) in contact or by bending/axial stretching of the lattice elements.  A 
disadvantage of the particle modeling approach lies in that the sphere interactions occur only under bearing or 
frictional contact, whereas they cannot transfer tension unless special contact elements are introduced to supply 
cohesion to the numerical model.   
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Recently, a third alternative option for discrete modeling, which is particularly targeted towards cementitious 
materials has been developed by the authors.  In this approach reference is made to the actual structure of the gel 
hydrates which, rather than spheres in contact, better resemble a system of dendrites, that is cementitious 
hydrates that grow outwards from a partially hydrated cement grain.  A simplistic idealization of this material 
form is given in Fig. 1(a) from [8].  A starting point in this approach is a random generation of cementitious 
grains (source nodes, SN), which defines the points of growth of cement hydrates (uniform distribution from a 
statistic point of view); similarly a random generation of target nodes (TN) defines the orientation of the 
hydration products which extend from the SN to the TN (see for example Fig. 1(b), [9–10]).  The total number of 
dendrite branches that grow outwards from the cementitious grain is a random variable; similarly random 
variables are the size of the branches and the shape of their cross section, since a range of possibilities from 
circular to elliptical shapes are randomly selected.   

In this manner a study region is defined, termed the box having dimensions in the order of a few 
micrometers, since the basic length measuring variable is the mean hydraulic distance (MHD), δo, which is a 
measure of the mean radius of pores in the gel, the pores being modeled as circular or rectangular slits.  The 
MHD is calculated as twice the ratio of the total evaporable water content held in the gel (which is an estimate of 
the available void space), divided by the internal surface area of the gel (per unit volume), both quantities being 
functions of the water to cement ratio, wo [1–2].  The MHD, which is the order of a few nanometers, is the 
fundamental length measure in the proposed method.  Therefore, the size of the study region as well as the 
lengths of the branches that represent the hydrates are given all in multiples of MHD.  Denser regions are near 
the cement grain, being represented by stocky dendrites that occur on the grain making a bulky mass.  They are 
part of the force path since they converge to the cement grain which is represented as a nodal point (with degrees 
of freedom) in the model.  The total solid volume comprises the collective volume of all the dendrite branches.   
 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.  (a) Idealization of packing of cement hydration products (from [8]).  (b, c) Definition of mesh for 
analysis on a discrete 24MHDx24MHD square space and trimming to produce a 15MHDx15MHD central region 
that is the study box.  Source nodes (diamonds) and target nodes (circles) are shown in (b) and the branches 
(lines) generated between them are shown in (c).  Blue nodes and solid blue branches lie inside the box.  Red 
nodes and dashed red branches lie outside the box.  Green branches lie half inside (solid) and half outside 
(dashed) the box; new boundary nodes (green) are created for these on the perimeter of the box. 
 

In a previous study a detailed evaluation of the model’s performance was carried out based on its ability to 
reproduce responses that are typical of concrete’s behavior under uniaxial tension and compression ([9], [10]).  It 
was found that, with very few input values, the familiar features of concrete’s behavior under mechanical load, 
such as, an almost proportional relationship between stiffness and density, nonlinear stress-strain laws with a 
softening branch beyond the peak, a compressive strength that is much higher than the uniaxial tensile strength, a 
consistent value of Poisson’s ratio and the dilative behavior with progressive damage are reproduced faithfully 
by the model.  In this stage the model is used to study the behavior of concrete under plane stress – the objective 
is to estimate, by applying different combinations of boundary conditions in the two principal axes of the 
coordinate system, the failure envelopes that characterize the material model – again, not by feeding them 
through a preconceived plasticity or nonlinear elasticity framework, but rather, to obtain them as the output of 
the model runs under specific boundary constraints.  Parameter of study is the ratio of uniaxial strength of the 
dendrite material in compression (crushing) and tension (fracture).  Results are presented in the form of biaxial 
failure envelopes expressed in the stress and strain space.  The validity of the estimations is surmised through 
comparison with known experimental behavior of cementitious materials under biaxial stress states, such as the 
familiar biaxial failure envelope of Kupfer and Gerstle[11] shown in Fig. 2 [12], as well as the effect of 
compression softening due to orthogonal tensile strains and the enhanced deformation capacity of cementitious 
materials owing to confinement.   

(a) 

(b) (c) 
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Figure 2:  Biaxial Failure Envelope plotted in the stress-space, with 
principal coordinates being the resultant stress on the box, along the 1 
and 2 axes, normalized with respect the uniaxial compressive strength of 
the material.  

 

2 GENERAL SPECIFICATIONS 

2.1 A discrete representation of the cementitious gel 

The model studies the box, which is the space trimmed in the core of the region depicted in Fig. 1(c); in the 
present study, the box is subjected to various states of plane stress by applying displacements or forces along its 
two principal directions; for reasons of numerical stability, most runs are displacement controlled in both 
directions, the only exception being unidirectional loading in plane stress.  Clearly the model may be extended to 
3D, however as is, it already requires great computational effort in order to produce a solution.   

To generate the mesh, two uniformly distributed random sets of nodes are generated and superimposed over a 
square test domain, representing the partially hydrated cement grains (source nodes, SN) and the potential 
locations of crossing of dendrite branches (target nodes, TN) – the TN being 3 times more dense than the SN.  
The density of the SN is taken as MHD–2 (in 3-D it would be MHD–3), and the MHD is taken equal to 1 µm.  In 
generating branches between SN and TN, not all possible connections are realized.  Rather, the probability of 
realization of any branch is assumed independent of its neighbors and exponential with probability density 
function ( ) ( )p exp MHD MHD= −ℓ ℓ  and cumulative probability function ( ) ( )P 1 exp MHD= − −ℓ ℓ , so as to 

have the expectation of the cantilevering length ℓ  of developing branches equal to MHD.  An arbitrary maxim-
um branch length of 3MHD is also enforced.   

The node and branch samples are taken over a much wider area than the square element considered in 
studying the response under uniform loading (referred to hereon as the “box”), in order to ensure that the box is 
free of boundary artifacts and as representative of “average conditions” as possible.  So a typical example case is 
to generate a study area 24MHD square, which is trimmed to a box of 15MHD square at the center of the study 
region.  For branches that cross the boundary of the box, new nodes lying on the boundary are generated in order 
to provide an end point for the trimmed branches.  Added nodes on the box perimeter are related to two master 
nodes, so that affine kinematics (macroscopic average conditions) may be enforced locally (as boundary condit-
ions on the box).  The first master node (visualized as lying at the origin) is fully fixed and enforces fixity of all 
negative faces in their respective normal directions.  The second master node (visualized as lying at the opposite 
corner) is used to enforce states of uniform stress and strain.  Its last degree of freedom (the y-displacement for 
2D, the z- displacement for 3D) is used as the controlling increment in simulation and is always displacement 
driven, so that softening response may be modeled.  On each remaining degree of freedom one may apply 
displacement or force (either constant or proportional to that of the last degree of freedom).  An event to event 
algorithm is used with constant strain increments ∆ε2 = εbf /200 along the direction of displacement control.  On 
each occasion, the last converged configuration serves as the starting point for each new increment.  The solution 
uses the standard nonlinear system-solver of Matlab® (Newton with trust region) with default tolerance of 10–6 
in both displacements and loads.   

From past results ([9], [10]) it has been surmised that the cross sectional shape of branches is a critical 
variable having a marked influence on the results.  Best performance was obtained when a random cross 
sectional shape was assumed for the branches.  In the present investigation, the cross section of individual 
branches may be either circular (all-rod networks) or elliptical with random aspect ratio between 1 and 100 
(random-aspect-ratio networks, closer to physical reality).  Note that in loading conditions where extension 
(direct or transverse) predominates, differences in average response measures between samples of all-rod 
specimens and samples of random-aspect-ratio specimens are much smaller than differences between specimens 
within each sample; in fact, they fall below the threshold of statistical significance for unidirectional loading.  
Such differences, however, become pronounced in compression-dominated loading (i.e., in the third quadrant in 
stress space of the biaxial failure envelopes).  Arithmetic results obtained are consistent with this observation. 

Material properties for the dendritic material: branches are idealized as linear elastic elements made of 
homogeneous and isotropic material of modulus Ebf = σbf/εbf, which rupture in tension at strain εbf and stress σbf.  

Equation approximating the Kupfer-Gerstle Biaxial Failure envelope in 
the third quadrant:  

 ( )
2

1 2 2 13.65 0+ − − =β β β β  (1) 

where β1= σ1/fc and β2= σ2/fc, fc is the concrete uniaxial compressive 
strength, and 0 >σ1>σ2 are the principal stresses (from [12]). 



V. Balopoulos, N. Archontas and S. J. Pantazopoulou 

Strain, stress and stiffness are given as multiples of εbf, σbf, and Ebf, respectively.  Branches may fail in compres-
sion by crushing or by Euler buckling (followed in both cases by brittle response) – whichever prevails as the 
controlling mode.  For the purposes of force/stiffness state determination and in estimating Euler buckling loads, 
branches are treated as if they were cylindrical of “average” cross-section.  Compressive failure by crushing at 
strain 10εbf and stress 10σbf is allowed, but rarely occurs in simulation.  In this case, which is used as benchmark 
in the sensitivity study that follows, branch failures in compression are predominantly due to buckling.  The 
calculated biaxial failure envelopes obtained from the model are studied parametrically by considering lower 
values for the ratios of crushing to tensile strength (specifically 3), revealing that this strength ratio may 
significantly influence the prevalent mode of dendrite failure in compression with noticeable implications on the 
form of the failure envelopes.   

In the present study, εbf = 10–4 and σbf = 10+4 mN/mm2 = 10 MPa are used, yielding Ebf = 100 GPa, all three 
values within order of magnitude of measured properties for pure hydrate phases and for cement paste (extrapol-
ated to zero porosity) reported in [1].  Previous studies have illustrated that scale effects can be significant [10]; 
therefore, only results for boxes of the same dimensions may be quantitatively compared.  The average behavior 
of any sample of boxes of finite dimension is expected to be stiffer and stronger than the material simulated, but 
it is hard to predict the dependence of simulation results on box dimensions.  Several runs of different size boxes 
would be required to document this sensitivity.   

The variability of the numerical results decreases slowly with increasing box size [10], but memory 
requirements and operation counts increase sharply, following roughly the square and the cube of the box size, 
respectively.  In previous studies by the authors [9–10], specimen dimensions of 24MHD x 24MHD (before 
trimming) and 15MHD x 15MHD (after trimming, simulated “box”) have given results that are reasonably close 
to macroscopic behavior (in error by roughly 10%, when compared to results for specimens of double the linear 
dimensions).  These specific dimensions were chosen for all specimens in this investigation.  About 500MB of 
RAM is required for each specimen and computation on a small PC of 5 years (available in quantity and at low 
cost anywhere in the world) takes about one half to one whole day (depending on the range of strains that need 
be imposed for the chosen type of loading).   

2.2 Simulated Response to Static Loading 

Results discussed in this work in the following paragraphs concern exclusively 2D specimens, loaded 
statically under enforced affine kinematics on the boundary for plane-stress.  Such loading would result in 
stresses and strains along the axes of the box, if the material was homogeneous and indifferent to orientation; this 
is indeed the case macroscopically for cement paste, and would be the case asymptotically for boxes of increas-
ing dimensions; thus shear stresses and strains are considered parasitic (an artifact of the small box dimensions) 
and are ignored.  All responses are parameterized by the driving principal strain magnitude and reported as 
functions of that principal strain value.  This is defined as the ratio of the displacement of the last master degree 
of freedom divided by the length of the specimen side.   

Some parameters specific to network generation were chosen a priori and kept constant for all runs, namely 
the ratio of TN to SN density (set to 3) and the maximum branch length allowed (set to 3MHD).  These 
parameters lead to specimens with material density ~25%.  Findings from past studies illustrate that a dominant 
determining factor of all stress and stiffness measures of plain cement paste is the material density.  By contrast, 
strain measures do not depend on material density.  In the range of values that are relevant to applications, the 
dependence of stress (and, hence, of stiffness) on material density is almost exactly linear.  On this finding 
numerical results obtained from the model are in agreement with experimental evidence.  Thus, the effects of 
specimen density on the results are removed (to within statistical significance) by non-dimensionalization (which 
involves division of computed stress and stiffness measures by the material density of the specimen).   

Results are presented in the form of biaxial failure envelopes of non-dimensionalized stresses and strains 
(i.e., divided by ρσbf and εbf, respectively) that correspond to the first attainment of peak stress in either of the 
principal axes of the coordinate system (i.e., to the limit point beyond which failure would ensue under load 
control).  More data points and larger samples for each point would make for more reliable failure envelopes.  
Note that the coordinate system, representing either the principal stresses or strains acting on the box sides along 
x and y (or 1, and 2) defines four quadrants, numbered as follows: Q1 for tension in both axes, Q2 for tension in 
axis 2 and compression in axis 1, Q3 for compression in both axes, and Q4 for tension in axis 1 and compression 
in axis 2.  Reference to this nomenclature will be made in the forthcoming sections.  

3 FAILURE ENVELOPES 

3.1 General Framework 

The failure envelopes produced in this study differ in the choice of branch cross section (either circular or 
elliptic with random aspect ratio) and in the presence of nano-reinforcement in the form of multi-wall carbon 
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nanotubes (either none or targeted at 0.1%, [14–17]).  In view of the findings in preceding studies with the 
proposed model [9–10], differences between failure envelopes are expected to be primarily caused by the 
difference in branch cross-section and to be more pronounced in the compression-dominated part (Q3).  

The introduction of nano-reinforcement is primarily intended for future investigation of its effect on post-
limit-point behavior after tension dominated failure (where branch cross-section shape makes little to no 
difference).  Note that based on the experience with the numerical model to this point [9], reinforcing the 
cementitious material with the addition of MWCNTs in the small amounts commonly used in practice (in the 
range of ~0.1%) increases the limit stress and strain of the resulting nano-reinforced paste by less than the 
statistical variability of the results compared [14–17].  Reinforcement of this type seems to significantly increase 
only the residual load bearing capacity past the limit point, thereby improving the energy absorption of the 
cementitious structure. 

All previous findings are known with certainty only where the global failure mechanism is dominated by 
cascading failures of branches due to tension in any direction.  Conditions near hydrostatic compression require 
further investigation.  In particular, it is necessary to investigate the effect of whether branch failures in compres-
sion are predominantly due to buckling or to crushing.  

3.2 Primitive data and failure envelopes 

Principal results, i.e., the absolutely larger stresses and strains at the limit points, are presented with 2.5 
significant digits (2 digits and one rounded to 5 or 0).  The same approach is applied to the absolutely smaller 
stresses and strains at the limit points, but without introducing more decimal digits.   

The location of limit points (in strain space) is more sensitive than their value (in stress space) to the details 
of post-processing filtering, as should be expected.  The particular filtering employed here aims to remove 
“abrupt” slope changes (signs of numerical divergence) and works well for removing “local” divergences 
without flattening out the response.  A tolerance parameter involved in the algorithm is set at 1.5% in all cases 
and is only reduced (to 1% or 0.5%) if visual inspection shows that local numerical spikes remain in the vicinity 
of the limit point of interest.   

The C2 splines, used to produce smooth failure envelopes, are highly sensitive to the details of the values 
entered.  For this reason (i.e., to get better looking failure curves), secondary stress and strain values are rounded 
independently of primary ones, even though the rounded off values may slightly violate loading constraints (i.e., 
the ratio of ε2 to ε1).  Even so, small errors in the data become unwanted artifacts in the C2 splines, since the 
“average points” interpolated have statistical variability that may exceed 20%.  

Simulation in 2D for compression-dominated loading conditions (Q3 in stress space) should overestimate 
limit-point stresses and strains, because it implies in-plane compressive failure of many dendrites, whereas out-
of-plane tensile failure of dendrites should play a significant role in actual 3D response.  Thus, the failure 
envelopes in the compression dominated zone in stress space are not expected to represent exactly conditions of 
zero transverse stress (σ3=0).  This effect is particularly pronounced in all-rod networks, where the ensemble of 
branches is more resistant to compressive failure.  In fact, the simulated failure point in 2D equal biaxial 
compression for all-rod networks with crushing-to-tensile strength ratio set at 10 is so implausible that it is 
shown in Figure 3 as a black crossed circle, but is not used in interpolations for the failure envelopes.   

3.3 Results for high crushing strength (10 times the fracture strength) 

These results are grouped in Table 1, for the case of unreinforced paste simulated with branches of circular 
cross section, and in Table 2, for the case of lightly reinforced paste simulated with branches of random elliptical 
cross section.  The resulting failure envelopes are shown in Figures 3 and 4, respectively.  Where branch failures 
due to direct or indirect extension dominate (pale red part of Tables 1 and 2), the quality of the results is 
excellent, characterized by low noise (usually filtering with 1.5% tolerance suffices), limited variability (from 
5% to 15%), and textbook failure envelopes (see Figures 3 and 4).  Furthermore, in tension-dominated response 
no statistically significant difference is observed between all-rod networks (Table 1 and Figure 3) and random-
aspect-ratio networks (Table 2 and Figure 4).  The stress failure envelope in Q1, Q2, and Q4 is quite similar to 
the well known Kupfer-Gerstle envelope [11, 12].  In particular it reproduces the almost constant tensile strength 
in the Q1 (which is an experimentally established fact) and the nearly linear variation in Q2 and Q4. 

In the Q3 of the stress space, simulation results are more noisy (filtering with tolerance 0.5% is often 
required) and more variable (from 10% to 30%).  There is also significant difference (up to 20%) between failure 
envelopes produced for physically implausible all-rod networks (Figure 3) and more plausible random-aspect-
ratio networks (Figure 4), as expected.  
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Figure 3:  Failure envelopes for 15MHDx15MHD specimens of plain paste with branches of circular cross 
section and of crushing strength 10 times the fracture strength in non-dimensionalized  a) stress space and  
b) strain space.  All envelopes are traced by C0 (dashed) and C2 (dotted) splines.  The Kupfer-Gerstle envelope is 
plotted as a black solid line. Note: For ε2=ε1↔σ2=σ1 in compression, simulated points of maximum stress are 
shown as crossed circles, but are not used in interpolation.  

 

 

Figure 4:  Failure envelopes for 15MHDx15MHD specimens of lightly(~0.1%) nano-reinforced paste with 
branches of elliptical cross section (random aspect ratio) and of crushing strength 10 times the fracture strength 
in non-dimensionalized  a) stress space and  b) strain space.  Both envelopes are traced by C0 (dashed) and C2 
(dotted) splines.  The Kupfer-Gerstle envelope is plotted as a black solid line. 

 
Simulated loading under full displacement control for ε2/ε1=–0.5 reproduces almost exactly the point of 

apparent incompressibility obtained for simulated unidirectional loading (see also [10]), in agreement with 
experiment [18].  Passage through that point, however, is not followed by immediate failure (as in the case of 
unidirectional loading), since material disintegration is prohibited by the imposed strain ratio ε2/ε1.  For many 
nearby loading conditions (ε2/ε1 from –0.5 to 0) paths to failure pass near the point ν=0.5 of unidirectional 
loading, and it is there that a significant number of specimens exhibit global divergence (numerical failure to 
maintain the imposed ε2/ε1).  Furthermore, specimens that avoid divergence exhibit extended plateaus (rather 
than well localized limit points) and fail at widely disparate strains (anywhere from 3εbf to above 5εbf).  All this is 
borne out by the failure envelopes in strain space, shown in Figures 3(b) and 4(b), which have each an extensive 
segment in radial direction and of slope exactly 1/2.   

The actual failure envelopes arising from simulation results for high strength against crushing (10 times the 
strength against fracture), and especially those for random-aspect-ratio networks, are like distorted polygons and 
are reminiscent of Tresca failure criteria, more pertinent for composite materials.  Hence, it is necessary to 
investigate how the shape and scale of these envelopes are affected by the chosen strength ratio.  

(a) (b) 

(a) (b) 
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Table 1:  Non-dimensional stress and strain data for 2D failure envelopes of 15MHDx15MHD plain paste 
specimens with branches of circular cross section and of crushing strength 10 times the fracture strength.  

N n Loading ε2/εbf ε1/εbf σ2/(ρσbf) σ1/(ρσbf) 
8 0 ε1=ε2 [+0.400] 15% [+0.400] 15% [+0.100] 17% [+0.100] 17% 
8 0 ε1=ε2/2 [+0.535] 9% [+0.265] 9% [+0.110] 11% [+0.085] 11% 

8 3 ε1=ε2/4 [+0.595] 6% [+0.150] 6% [+0.110] 14% [+0.065] 13% 
5 0 ε1=0 [+0.620] 7% 0 [+0.110] 7% [+0.040] 7% 
8 0 ε1=–ε2/4 [+0.665] 9% [–0.165] 9% [+0.110] 7% [0.000] 
10 1 σ1=0 [+0.670] 7% [–0.225] 9% [+0.110] 10% 0 
14 0 ε1=–ε2/2 [+0.700] 5% [–0.350] 5% [+0.105] 15% [–0.025] 19% 
8 2 ε1=–3ε2/4 [+0.720] 8% [–0.540] 8% [+0.090] 10% [–0.065] 17% 
10 1 ε1=–ε2 [+0.660] 20% [–0.660] 20% [+0.075] 10% [–0.075] 10% 
8 0 ε2=–3ε1/4 [+0.670] 6% [–0.890] 6% [+0.070] 13% [–0.125] 7% 

10 
1 
1 

σ2=0 
[+1.00] 20% 
[+0.90] 11% 

[–1.90] 7% 
[–1.85] 10% 

0 
[–0.275] 7% 
[–0.265] 7% 

8 
14 

1 
0 

ε2=–ε1/2 
[+2.60] 12% 
[+0.90] 7% 

[–5.25] 12% 
[–1.85] 8% 

[–0.175] 22% 
[0.000] 

[–0.555] 17% 
[–0.265] 8% 

8 1 ε2=–ε1/4 [+1.4] 15% [–5.6] 15% [–0.25] 25% [–0.65] 25% 
5 1 ε2=0 0 [–5.40] 6% [–0.375] 6% [–0.720] 11% 
8 6 ε2=ε1/4 insuff.data insuff.data insuff.data insuff.data 
8 3 ε2=ε1/2 [–2.00] 13% [–4.00] 13% [–0.530] 12% [–0.655] 7% 
8 4 ε2=ε1 [–3.40] 10% [–3.40] 10% [–0.715] 25% [–0.715] 25% 

 
Table 2:  Non-dimensional stress and strain data for 2D failure envelopes of 15MHDx15MHD of lightly 
(~0.1%) nano-reinforced paste specimens with branches of elliptical cross section (random aspect ratio) and of 
crushing strength 10 times the fracture strength.  

N n Loading ε2/εbf ε1/εbf σ2/(ρσbf) σ1/(ρσbf) 
7 0 ε1=ε2 [+0.445] 7% [+0445] 7% [+0110] 8% [+0.110] 8% 
8 1 ε1=ε2/2 [+0.525] 9% [+0.260] 9% [+0.115] 8% [+0.085] 9% 
7 1 ε1=ε2/4 [+0.555] 9% [+0.140] 9% [+0.115] 13% [+0.065] 13% 
8 2 ε1=0 [+0.595] 3% 0 [+0.115] 9% [+0.040] 10% 
7 0 ε1=–ε2/4 [+0.670] 15% [–0.165] 15% [+0.115] 9% [+0.010] 23% 
15 0 σ1=0 [+0.670] 8% [–0.220] 13% [+0.115] 11% 0 
15 1 ε1=–ε2/2 [+0.700] 10% [–0.350] 10% [+0.110] 10% [–0.025] 15% 
20 2 ε1=–ε2 [+0.740] 15% [–0.740] 15% [+0.085] 15% [–0.095] 20% 

15 
2 
2 

σ2=0 
[+1.00] 22% 
[+1.00] 10% 

[–2.05] 9% 
[–2.00] 10% 

0 
[–0.275] 8% 
[–0.270] 9% 

8 
15 

1 
0 

ε2=–ε1/2 
[+2.25] 6/% 
[+0.95] 8% 

[–4.50] 6% 
[–1.90] 8% 

[–0.125] 6% 
[0.000]  

[–0.415] 5% 
[–0.265] 13% 

7 2 ε2=–ε1/4 [+1.05] 18% [–4.20] 18% [–0.165] 24% [–0.500] 11% 
8 5 ε2=0 0 [–4.10] 1% [–0.275] 10% [–0.555] 10% 
7 1 ε2=ε1/4 [–0.95] 15% [–3.80] 15% [–0.390] 17% [–0.590] 14% 
8 3 ε2=ε1/2 [–1.75] 5% [–3.50] 5% [–0.455] 8% [–0.560] 8% 
7 3 ε2=ε1 [–2.80] 15% [–2.80] 15% [–0.505] 14% [–0.505] 14% 

 

3.4 Results for low crushing strength (3 times the fracture strength) 

Results for low branch crushing strength set at only 3 (rather than 10) times higher than the corresponding 
fracture strength and subject to various types of loading, are listed in Table 3 and shown (with the same 
conventions as before) in Figure 5 for all-rod networks.  The same is done for lightly reinforced random-aspect-
ratio networks in Table 4 and Figure 6.  Notice that the compressive stresses and strains listed and shown are 
much smaller than those for high branch crushing strength.  In Figures 5(a) and 6(a), the Q3 part of the Kupfer-
Gerstle envelope (Eq.1) corresponding to the strength in uniaxial compression is shown again as a black solid 
line and is matched very closely by the numerical results.  

Almost all differences between the two sets of data are statistically insignificant.  Furthermore, all failure 
envelopes appear convex, which is not the case for high crushing strength.  Tension-dominated responses are 
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proven independent (to within statistical significance of the data) of branch aspect ratio (if physically plausible) 
and of nano-reinforcement (if “light”), again as expected.  Furthermore, the reduction of branch crushing 
strength by 70% causes a reduction in the unidirectional compressive strength of networks by only 15–20%, a 
fact that reaffirms the predominance of transverse extension in the failure mechanism.  

 

 

Figure 5:  Failure envelopes for 15MHDx15MHD specimens of plain paste with branches of circular cross 
section and of crushing strength 3 times the fracture strength in non-dimensionalized  a) stress space and  
b) strain space.  Both envelopes are traced by C0 (dashed) and C2 (dotted) splines.  The Kupfer-Gerstle envelope 
is plotted as a black solid line. 
 

 

Figure 6:  Failure envelopes for 15MHDx15MHD specimens of lightly(~0.1%) nano-reinforced paste with 
branches of elliptical cross section (random aspect ratio) and of crushing strength 3 times the fracture strength in 
non-dimensionalized  a) stress space and  b) strain space.  Envelopes are traced by C0 (dashed) and C2 (dotted) 
splines.  The Kupfer-Gerstle envelope is plotted as a black solid line. 
 

In uniaxial compression, there is noticeable difference in both stress and strain space between the point of 
limit stress (at lower strains) and the point of apparent incompressibility (at higher strains).  The two points are 
not completely unrelated (in our earlier investigations of all-flake networks [10] they were found to differ by 
more than 30%), but they are not statistically identical either (they differ by less than 10% for all-rod networks 
and by about 15% for random-aspect-ratio networks).   

The lowered crushing strength appears to render insignificant the effects of random aspect ratio of branch 
cross-sections on Q3 responses.  The use of a random aspect ratio should clearly (if not dramatically) reduce Q3 
strength; since no such trend is observed in the results, there must be a counterbalancing strengthening effect, 
due to the presence of light nano-reinforcement in the case where such is considered.  Besides controlling 
material disintegration and maintaining higher post-peak stresses, light nano-reinforcement appears to move the 
attainment of peak stress to slightly lower strains and the occurrence of apparent incompressibility to slightly 

(a) (b) 

(a) (b) 
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higher strains (due to sustained confinement, to visualize this effect compare Tables 3 and 4).  These last effects 
are not crisply visible, due to the high statistical variability of the results. 

 
Table 3:  Non-dimensional stress and strain data for 2D failure envelopes of 15MHD x 15MHD of plain paste 
specimens with branches of circular cross section and of crushing strength 3 times the fracture strength.  

N n Loading ε2/εbf ε1/εbf σ2/(ρσbf) σ1/(ρσbf) 
8 1 ε1=ε2 [+0.435] 20% [+0.435] 20% [+0.100] 17% [+0.100] 17% 
8 2 ε1=ε2/2 [+0.495] 11% [+0.255] 11% [+0.110] 12% [+0.085] 11% 

8 3 ε1=ε2/4 [+0.560] 17% [+0.140] 17% [+0.105] 11% [+0.060] 13% 
8 1 ε1=0 [+0.630] 6% 0 [+0.115] 7% [+0.040] 10% 
8 2 ε1=–ε2/4 [+0.620] 12% [–0.155] 12% [+0.110] 7% [+0.010] 19% 
8 1 σ1=0 [+0.670] 11% [–0.220] 16% [+0.105] 9% 0 
7 0 ε1=–ε2/2 [+0.700] 14% [–0.350] 14% [+0.095] 14% [–0.025] 20% 
8 1 ε1=–ε2 [+0.710] 12% [–0.710] 12% [+0.080] 13% [–0.095] 13% 

7 
1 
0 

ε2=–ε1/2 
[+0.85] 8% 
[+0.90] 7% 

[–1.70] 8% 
[–1.80] 7% 

[+0.010] 220% 
[0.000]  

[–0.210] 14% 
[–0.195] 20% 

8 
4 
5 

σ2=0 
[+0.70] 20% 
[+0.90] 5% 

[–1.70] 14% 
[–1.85] 5% 

0 
[–0.235] 7% 
[–0.215] 14% 

8 3 ε2=–ε1/4 [+0.45] 9% [–1.70] 9% [–0.040] 33% [–0.280] 17% 
8 1 ε2=0 0 [–1.65] 12% [–0.105] 18% [–0.280] 15% 
8 2 ε2=ε1/4 [–0.40] 9% [–1.55] 9% [–0.165] 8% [–0.285] 9% 
8 3 ε2=ε1/2 [–0.70] 13% [–1.45] 13% [–0.220] 15% [–0.295] 16% 
8 0 ε2=ε1 [–1.20] 12% [–1.20] 12% [–0.265] 15% [–0.265] 15% 

 
Table 4:  Non-dimensional stress and strain data for 2D failure envelopes of 15MHD x 15MHD of lightly 
(~0.1%) nano-reinforced paste specimens with branches of elliptical cross section (random aspect ratio) and of 
crushing strength 3 times the fracture strength. 

N n Loading ε2/εbf ε1/εbf σ2/(ρσbf) σ1/(ρσbf) 
8 2 ε1=ε2 [+0.435] 14% [+0.435] 14% [+0.110] 12% [+0.110] 12% 
8 1 ε1=0 [+0.610] 13% 0 [+0.115] 12% [+0.040] 13% 
8 1 ε1=–ε2/4 [+0.625] 14% [–0.155] 14% [+0.110] 12% [+0.010] 29% 

8 2 σ1=0 [+0.665] 10% [–0.220] 14% [+0.110] 9% 0 

8 1 ε1=–ε2 [+0.695] 10% [–0.695] 10% [+0.085] 12% [–0.090] 12% 

8 
1 
2 

σ2=0 
[+0.65] 14% 
[+1.00] 10% 

[–1.65] 8% 
[–2.00] 10% 

0 
[–0.230] 9% 
[–0.205] 12% 

8 2 ε2=–ε1/4 [+0.50] 10% [–1.95] 10% [–0.050] 24% [–0.280] 16% 
8 2 ε2=0 0 [–1.65] 4% [–0.110] 12% [–0.295] 8% 
8 0 ε2=ε1 [–1.20] 9% [–1.20] 9% [–0.275] 12% [–0.275] 12% 

 

4 CONCLUSIONS 

Failure envelopes for cementitious pastes are derived using a recently developed model of the material 
microstructure that uses a random lattice of hydrates growing out of a statistically uniform distribution of 
partially hydrated cement grains.  Although the region modeled extends but a few micrometers in size, the 
mechanical behavior obtained under plane stress enforced through displacement control is thoroughly consistent 
with the experimentally derived failure envelopes for cement-like materials such as the Kupfer & Gerstle biaxial 
failure envelopes.  Results are presented in the stress and strain space, enabling the observation and confirmation 
of familiar phenomena such as (a) the increased strength of the material under biaxial compression due to the 
confining action imparted by lateral restraint, (b) the increased resilience and fracture energy of cementitious 
materials reinforced with CNTs[14-17], (c) the effect of compression softening which refers to the reduction of 
compressive strength in the presence of transverse tensile strain.  The most important aspect of these behavioral 
results is that they are obtained as calculated output of the analytical model, using as input a minimum number of 
material variables and no preconceived expressions as to the expected behavior; reproduced phenomena that 
characterize the behavior of cementitious materials include but are not limited to the apparent lateral dilation of 
compressed material beyond the peak, near incompressibility at the uniaxial compression limit point, a 
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reasonable ratio of compressive to tensile response, and the familiar characteristics of the biaxial failure 
envelope. 
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