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Abstract. This paper presents a simple and efficient analytical model for the cyclic behavior and strength 

capacity of circular concrete-filled steel tubes (CFT) under axial load and cyclically varying flexural loading. 

Firstly, an accurate nonlinear finite element model is created using the ATENA software. The validity of this 

model is established by comparing its results with those of experimental data published in the literature. Then, 

using this finite element model, an extensive parametric study is conducted to create a databank of hysteretic 

behavior of circular CFTs, involving numerous circular CFT columns with different diameter to thickness ratios, 

steel tube yield stress and concrete strength. On the basis of this computational study, expressions are developed 

to determine the necessary phenomenological parameters of the well-known Ramberg-Osgood hysteretic model. 

Additionally, a proposed method is extended involving analytical relations for the capacity of circular CFT 

columns which provide a direct and efficient representation of the ultimate strength of circular CFT columns. 

Comparisons between analytical and experimental results demonstrate that the proposed analytical model 

provides good convergence for the cyclic behavior of circular CFT columns.  

   

1. INTRODUCTION  

 

     Steel members are characterized by high tensile strength and ductility, while concrete members have the 

advantages of high compressive strength and stiffness. Composite members combining steel and concrete result 

in members enjoying the advantageous qualities of both materials, i.e., sufficient strength, ductility and stiffness 

[1]. Concrete-filled steel tube (CFT) columns are widely used in heavy constructions because they provide 

excellent static and earthquake-resistant properties, such as high strength, high ductility, high stiffness, and large 

energy-absorption capacity. CFT columns provide benefits obtained both from steel and concrete: a steel tube 

surrounding a concrete column not only assists in carrying axial load but also confines the concrete. 

Furthermore, it eliminates the permanent formwork, which reduces construction time and cost, while the 

concrete core takes the axial load and prevents or delays local buckling of the steel tube. However, they are 

scarcely adopted in the construction industry, mainly due to the lack of understanding of their structural behavior 

and reliable design recommendations [1, 2]. 

Moment resisting frames (MRFs) composed of CFT columns combined with steel beams are one form of 

composite construction. The combination between CFT-MRF provides a ductile and lightweight frame with the 

added stiffness of composite columns to control lateral drift [3]. Although, the research on CFT columns has 

been ongoing worldwide for decades and significant contributions have been made by many researchers, some 

cyclic loading experiments (i.e. Inai et al, [4]; Varma et al., [5]) have been conducted in order to examine their 

hysteretic behavior. There are many types of CFT columns, as illustrated in Figure 1. This study is focused on 

the circular CFT columns, which outmatch against square columns such as: their moment enhancement ratios are 

greater due to the larger confinement of the concrete core, their circular steel tubes have advantage of restraining 

local buckling limiting the deterioration phenomena, their flexural strength and ductility are higher [3,4]. 
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     The purpose of this paper is to propose an accurate analytical model to simulate the cyclic behavior of 

circular CFT column. This model is based on concentrated plasticity theory, it is simple and it can be used in 

seismic analysis of composite MRFs in combination with Ruaumoko program for simulating accurately the 

complex behavior of a CFT member under axial force and bending moment. The main objective is the 

determination of the Ramberg-Osgood hysteretic model parameters which are available in Ruaumoko [6] or 

other similar nonlinear structural analysis programs. These parameters are defined empirically on the basis of 

extensive response database created with the aid of a refined CFT finite element model that involves both 

concrete and steel nonlinear behavior, using ATENA program [7] and following the methodology developed by 

Skalomenos et al. [3] who proposed hysteretic models for simulating the cyclic response of square CFT columns. 

Based on the findings of their study and those obtained here, comparisons are also made between the cyclic 

responses of circular and square CFT columns. 

 
Figure 1. Concrete-filled steel tubular columns. 

    

2. FINITE ELEMENT MODEL  STRUCTURE FOR CIRCULAR CFT COLUMNS  

 

     To study the actual behavior of circular CFT column, three-dimensional non-linear finite element models 

were constructed using the finite element software ATENA program. According to the experimental procedures 

of Inai et al. [4], a circular CFT column with length 1.5 m was structured which was fixed at its base. At its top a 

constant axial load (P) and a lateral loading (H) were subjected as shown in Figure 2. At the top of surface of the 

column the axial load (P) was applied via a rigid plate and a pre-stressed cable aiming at indicating the base of 

the column and in the direction of the chord of its displaced shape. Due to symmetry, only a half of the column is 

analyzed. The nodes on the symmetry surface were restricted on Y direction. For solving the nonlinear equations 

of motion Newton Raphson method was used in ATENA.  

     In the finite element mesh, both the concrete core and the steel tube are modeled by 20-node shell elements 

and 8-node solid elements, respectively. In the modeling of steel tubes, parameters such as the nonlinear 

behavior of confined concrete, the cyclic local buckling of steel tubes and the interface between concrete and 

steel tube are taken into account. Another important criterion for the modeling process is the choice of the 

element type and mesh size that provide accurate results with reasonable computational time [3]. 

 

 
Figure 2. Columns specimen and its finite element model. 

 

3. MODELING OF CIRCULAR CFT COLUMN  

 

3.1 Confined concrete modeling 

 

     Since the confining effect causes the concrete core to behave in a triaxial compressive stresses due to 

interaction between steel tube and concrete in a CFT column, the failure of concrete is dominated by the 
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compressive failure surface expanding with increasing hydrostatic pressure. Hence, a suitable model that 

describes the triaxial strength of concrete in terms of three independent stress invariants (ɝ,ɟ,ɗ) is the 

hardening/softening plasticity model, which is based on Menétrey and Willam [8] failure surface. This model 

can be used to simulate the concrete cracking, the crushing under high confinement and the crack closure due to 

the crushing in other material directions. The failure surface (Ὂ3ὖ
ὴ

) of Menétrey and Willam is defined as: 
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     In the above equations, (ɝ,ɟ,ɗ) are Heigh-Westergaard coordinates, ὶ1(—,‐)  is the elliptic function, m is the 

friction parameter, Ὢὧ and Ὢὸ denote the uniaxial compressive strength and the uniaxial tensile strength, 

respectively. The eccentricity parameter e is ranged from 0.5 to 1.0 and describes the roundness of the failure 

surface. The failure surface has sharp corners if e = 0.5 and is fully circular around the hydrostatic axis if e = 1.0. 

In this study, since the predicted model has circular shape, the eccentricity e is equal to 1.0. Finally, the cohesion 

parameter is ranged from 0 to 1.0 and it controls the hardening/softening for Menétrey-Willam surface.  

 

3.2 Steel tube modeling 

 

     The hysteretic behavior of thin-walled steel tubes is strongly affected by the local buckling with cyclic metal 

plasticity. For this purpose in order to express the local buckling of steel tubes we incorporate Von-Mises 

plasticity theory in conjunction with the Armstrong and Frederic nonlinear kinematic hardening rule. The ability 

of the proposed model describes accurately the Bauschinger effect. Von-Mises plasticity model, also called ὐ2 

plasticity, is based only on one parameter k. The yield function is the following: 

 

Ὂὴ„ὭὮ = ὐ2 Ὧ‐Ὡή
ὴ

= 0  ,            Ὧ= (‐‐ή
ὴ

) = 1
3„ώ‐Ὡή

ὴ
                                              (3)  

 

where ὐ2 denotes the second invariant of stress deviator tensor, the parameter k is the maximal shear stress and 

„ώ is the uniaxial yield stress, which controls the isotropic hardening of the yield criterion and it is defined as: 
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H is the hardening modulus and ‐Ὡή
ὴ

 the equivalent plastic strain calculated as a summation of equivalent plastic 

strains during the loading history. In case, Von-Mises model could be used to model cyclic steel behavior 

including effect, the yield function can be expressed as: 

 

Ὂ= 1/ 2(„ᴂ  ): „ᴂ    Ὧ‐Ὡή
ὴ

ὶ1 1 Ὧ0 = 0                                                       (5)  

  

where „ᴂ is the deviatoric stress, Ὧ0 is the initial value of Ὧ(‐Ὡή
ὴ

)  according to Eq. (5) and X is the so called back 

stress controlling the kinematic hardening: 
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Eq. (6) has the following solutions: 
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where the quantities ὶ1, Ὧ1 and Ὧ2 are the material parameters for the cycling response. If ὶ1 0, the cyclic 

model is activated and it controls the radius of Von-Mises surface. If ὶ1 = 1, the yielding will start exactly when 

„ώ is reached. For lower values the non-linear behavior starts earlier and slope of the response is mainly affected 

by parameter k1 (large value-higher slope). Parameter Ὧ2 affects the memory of the cyclic response. In this study, 

based on our preliminary experimental results, we concluded that the appropriate values for ὶ1, Ὧ1 and Ὧ2were 
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found to be 0.40, 50x10
3
 MPa and 90, respectively. Moreover, the Poisson’s ratio ’ί and the elastic modulus Ὁa 

are assumed to be 0.3 and 210 GPa, respectively. 

 

3.3 Interface modeling between steel and confined concrete 

 

     Using an accurate model, which illustrates the actual contact behavior, a simulation of the interface action 

between steel tubular column and confined concrete is necessity. This interaction is modeled by a special 8-node 

interface element, called gap element, which is available in ATENA. When these two surfaces come into 

contact, contact pressure acts on a representative surfaces and frictional stress occurs in the direction tangential 

to the contact surface. This kind of behavior is based on Mohr-Coulomb criterion with cut-off. The constitutive 

relation for a general three-dimensional case in given in terms of tractions on interface planes and relative sliding 

and opening displacements and it is mentioned as: 

 
†1
†2
„

=

ὑὸὸ 0 0
0 ὑὸὸ 0
0 0 ὑὲὲ
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ῳ’2
ῳό

                                                                                  (8)  

 

where Ű is the shear stress, ů the normal stress, ῳ’ and ῳό are the relevant sliding and opening displacement 

respectively. ὑὲὲ and ὑὸὸ denote the initial elastic normal and shear stiffness respectively and they are assumed 

to be equal to 10
5
 MPa [9]. Additionally, it is assumed that the contact surfaces are not allowed to penetrate each 

other, the friction between the two faces with a coefficient equal to 0.4 is maintained as long as the surfaces 

remain in contact and no tension strength exists between the two faces, thereby allowing the contact surfaces to 

separate. 

     The accuracy of ATENA finite element model is validated comparing the two cyclic loads with constant axial 

load experiments conducted by Inai et al. [4]. Figure 3 illustrates the curves of moment (M) versus rotation angle 

(θ) of finite element analysis are plotted compared with the experimental data which reveal similar performance 

in both cases.  

 

 
Figure 3. Moment-Rotation Angle response of test specimens SC4A4C and SC6A9C [4] compared with 

finite element analysis of ATENA program.  

 

Subsequently, the basic stages, which presented in Figure 3, are described analytically [10]: 

Stage 1: Elastic stage (from the center of axes to point A). During this stage, steel and concrete bear load 

independently. The yielding of steel occurs at point A. 

Stage 2: Elastic-plastic stage (from point A to point B). During this stage, concrete in the compressive zone is 

confined by the steel tube because the Poisson ratio of concrete becomes larger than that of steel. The 

confinement enhances as the longitudinal deformation increases. The stiffness decreases with the increase of the 

zone of steel yielding as a result the moment (M) versus rotation angle (θ) curves tend to go upwards. The shape 

of the curve mainly depends on the value of axial load level. When this level is small, the curve goes up steadily 

to point B, while when the level is relative big, the curve starts to go down after a short increase to point B. In 

other words, the smaller the axial level, the later the curve starts to fall down. 

Stage 3: Unloading stage (from point B to point C). During this stage, moment (M) versus rotation angle (θ) 

response shows linear behavior. 

Stage 4: Elastic curve of reverse loading (from point C to point D). During this stage, the moment (M) versus 

rotation angle (θ) response shows nonlinear behavior. Generally, the steel in the outer fiber goes into yielding 

from point D. 
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Stage 5: Elastic-plastic stage of reverse loading (from point D to point E). During this stage, the moment (M) 

versus rotation angle (θ) response nonlinear behavior. The stiffness of the columns decreases with the increase of 

the steel yielding zone, as well as the tensile zone in the cross sections. 

Stage 6: Reloading stage (from point E to point F). During this stage, the moment (M) versus rotation angle (θ) 

response shows similar behavior as the stage from point B to point E. 

 

4. PARAMETRIC STUDIES  

 

4.1 Experimental investigation 
 

Table 1, shows 48 circular CFT columns with different diameter to thickness ratios (D/t), steel tube strength (Ὢώ) 

and concrete strength (Ὢί) under a cyclic load protocol with variable intensity. Eurocode 4 [EC4] provides a 

range from 20 to 50 MPa for the concrete strength, 235 to 460 MPa for the steel strength and for the slenderness 

ratio (D/t) a value ≤ 90‐2, where ‐= 235/Ὢώ. 

 

SPECIMEN DIMENSIONS 
EC4 LIMIT             

D/t Ò max(D/t) 

MATERIAL 

PROPERTIES 

 D t D/t max(D/t)=90*235/fy fy fc 

S59-20-235 355.6 6.00 59.267 90 235 20 

S59-30-235 355.6 6.00 59.267 90 235 30 

S59-40-235 355.6 6.00 59.267 90 235 40 

S59-50-235 355.6 6.00 59.267 90 235 50 

S59-20-275 355.6 6.00 59.267 76.91 275 20 

S59-30-275 355.6 6.00 59.267 76.91 275 30 

S59-40-275 355.6 6.00 59.267 76.91 275 40 

S59-50-275 355.6 6.00 59.267 76.91 275 50 

S59-20-355 355.6 6.00 59.267 59.58 355 20 

S59-30-355 355.6 6.00 59.267 59.58 355 30 

S59-40-355 355.6 6.00 59.267 59.58 355 40 

S59-50-355 355.6 6.00 59.267 59.58 355 50 

S59-20-460 355.6 6.00 59.267 45.98 460 20 

S59-30-460 355.6 6.00 59.267 45.98 460 30 

S59-40-460 355.6 6.00 59.267 45.98 460 40 

S59-50-460 355.6 6.00 59.267 45.98 460 50 

S65-20-235 406.4 6.30 64.508 90.00 235 20 

S65-30-235 406.4 6.30 64.508 90.00 235 30 

S65-40-235 406.4 6.30 64.508 90.00 235 40 

S65-50-235 406.4 6.30 64.508 90.00 235 50 

S56-20-275 406.4 6.30 64.508 76.91 275 20 

S65-30-275 406.4 6.30 64.508 76.91 275 30 

S65-40-275 406.4 6.30 64.508 76.91 275 40 

S65-50-275 406.4 6.30 64.508 76.91 275 50 

S65-20-355 406.4 6.30 64.508 59.58 355 20 

S65-30-355 406.4 6.30 64.508 59.58 355 30 

S65-40-355 406.4 6.30 64.508 59.58 355 40 

S65-50-355 406.4 6.30 64.508 59.58 355 50 

S65-20-460 406.4 6.30 64.508 45.98 460 20 

S65-30-460 406.4 6.30 64.508 45.98 460 30 

S65-40-460 406.4 6.30 64.508 45.98 460 40 

S65-50-460 406.4 6.30 64.508 45.98 460 50 

S56-20-235 559 10.00 55.9 90.00 235 20 

S56-30-235 559 10.00 55.9 90.00 235 30 

S56-40-235 559 10.00 55.9 90.00 235 40 

S56-50-235 559 10.00 55.9 90.00 235 50 

S56-20-275 559 10.00 55.9 76.91 275 20 

S56-30-275 559 10.00 55.9 76.91 275 30 

S56-40-275 559 10.00 55.9 76.91 275 40 

S56-50-275 559 10.00 55.9 76.91 275 50 

S56-20-355 559 10.00 55.9 59.58 355 20 

S56-30-355 559 10.00 55.9 59.58 355 30 

S56-40-355 559 10.00 55.9 59.58 355 40 

S56-50-355 559 10.00 55.9 59.58 355 50 

S56-20-460 559 10.00 55.9 45.98 460 20 

S56-30-460 559 10.00 55.9 45.98 460 30 

S56-40-460 559 10.00 55.9 45.98 460 40 

S56-50-460 559 10.00 55.9 45.98 460 50 

 

Table 1: Specimen dimensions and material properties for the parametric study. 
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The lateral loading history is based on Applied Technology Council (ATC) 24 guidelines [11] for cyclic testing 

of structural steel components, as modified in the test procedures which were conducted by Inai et al. [4]. Figure 

4 shows a part of the complete lateral loading history, which consists from the following several displacement 

levels: 0.25uy, 0.50uy and 0.70uy for elastic cycles and 1.0, 1.5, 2.0, 3.0, 5.0, 7.0, 8.0, 11.0 and 14.0uy for inelastic 

cycles with three cycles imposed at each displacement level of 1.0, 1.5, 2.0uy and two cycles at other levels. 

 

 
 

Figure 4. Lateral loading history. 

 

The loading history consists of lateral elastic and inelastic displacement cycles adding an axial constant load of 

0.20ὖ0, where ὖ0 = ὃaὪa + ὃὧὪὧ is the axial load capacity of the columns. According to EC4 [12], the effective 

secant stiffness ὑὩὪὪ of specimen is given by:  

 

ὑὩὪὪ= 3
ὉὍὩὪὪ

ὒ3
                                                                                               (9)  

 

where L is the total height of specimen and ὉὍὩὪὪ is the effective flexural stiffness of a cross section of a 

composite column with the following form [12]: 

 

ὉὍὩὪὪ = ὑ0(ὉaὍa + ὑeὉcmὍc)                                                                             (10)  

 

where ὑὩ is a correction factor which should be taken as 0.6, ὑ0 is the calibration factor which should be taken 

as 1.0 and Ὁὧά is the secant modulus of elasticity of concrete in GPa which can be evaluated by the following 

formula:  

Ὁὧ= 22
Ὢὧ+ 8

10
                                                                                           (11)  

 

Finally, Ὅa and Ὅὧ are the second moments of area of the structural steel section and the un-cracked concrete, 

respectively where can defined as follows [12]: 

 

                                            Ὅc =
“Ὠc

4

64
,   Ὠc = Ὀ 2ὸ  ,      Ὅa =

“

64
(Ὀ4 Ὠὧ

4)                                                      (12) 

 

where D is the external diameter of steel tube, Ὠὧ is the diameter of the concrete core and t the thickness of steel 

tube. Furthermore, indices “a” and “c” have to do with steel and concrete regions. The horizontal yield force 

(Ὄώ)  of the specimen can be determined by the corresponding yield moment (ὓώ) , as [12]: 

 

Ὄώ=
ὓώ

ὒ
                                                                                                   (13)  

 

4.2   Analytical interaction relation between axial force and bending moment 

 

     In this section, a polynomial expression is developed in order to represent the two-dimensional axial force-

bending moment (N-M) cross-section strength for circular CFT columns having a wide range of material 

strengths and cross-section dimensions. The N-M interaction curve for circular CFT columns is represented by 

the polynomial equation [13]: 
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Figure 5. Typical axial force-bending moment   

                        interaction curve.                    

 

 

 
Subindex-i ╝ἵἩὀ(╪░) ╜ἵἩὀ(╫░) ╜ (╬░) ╝╜ ἵἩὀ(▀░) 

1 817.2 595.2 22.50 385.7 

2 5528 5924 -6358 1961 

3 128.3 275.5 6.827 108.4 

4 1282 2103 -2257 213.9 

 

Table 2: Parameters a-d. 

 

Ὧ1 + Ὧ2ὔ+ Ὧ3ὔ
2 + Ὧ4ὔ

4 ὓώ= 0                                                                 (14)  

 

where the parameters Ὧ1, Ὧ2, Ὧ3 and Ὧ4 result from the maximum axial force ὔmax  and its corresponding axial 

force ὔM max  as well as the maximum pure bending moment ὓ0 as shown in Figure 5. The above constants are 

given by: 

 

Ὧ1 = ὓ0  
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4 4ὔmax
2 ὔὓ max
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2
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In this paper, the four characteristic quantities of interaction curve result from empirical equations as 

 

ὔmax = ὃὧὪὧ(ὥ1 + ὥ2

ὸ

Ὀ
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Ὢώ

+ ὥ4— )                                                                    (16) 
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ὔM max = ὃὧὪὧ(Ὠ1 + Ὠ2

ὸ

Ὀ
+ Ὠ3
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+ Ὠ4—)                                                                 (18)  

 

ῼ0 = ὡὧὪὧ(ὧ1 + ὧ2
ὸ

Ὀ
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Ὢὧ
Ὢώ

+ ὧ4—)                                                                          (19) 

 

—=
ὃaὪώ

ὃὧὪὧ
,      ὡὧ=

“Ὠὧ
3

32
                                                                                                 (20)  

 

where Wc is the elastic section modulus of concrete core in m
3
, the ai, bi, ci and di factors (i=1-4) of Eqs (16)-(19) 

are shown in Table 2. The resulted axial forces and bending moments are expressed in KN and KNm, 

respectively. Furthermore, the diameter D and the thickness t should be expressed in mm, the steel yield stress 

(Ὢώ) and the concrete compressive strength (Ὢὧ) in MPa, section areas of steel (ὃa) and concrete (ὃὧ) in m
2
. 

The horizontal yield displacement (ῳώ) can be defined using the Eqs (13) and (9), as ῳώ= Ὄώ ὑὩὪὪϳ . The 

effectiveness of Eq. (13) for Ὄώ and ῳώ are shown in Figure 6 which compared with ATENA values. 
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Figure 6. Horizontal yield force and yield displacement versus ATENA values. 

 

5. PARAMETERS DETERMINATION OF RAMBERG -OSGOOD MODEL 

 

5.1 Modified Ramberg-Osgood hysteretic model 

 

The Ramberg-Osgood model is used to describe load-displacement hysteresis curves H(ȹ) displaying an elastic 

branch up to the yield displacement ῳώ and the corresponding yield force Ὄώ, followed by a transition curve 

which leads to a plastic branch. The transition between the elastic and plastic branch, is controlled by the 

Ramberg-Osgood factor ὶ2 whose influence is presented in Figure 7. For monotonic loading, the modified 

Ramberg-Osgood hysteresis model is expressed by the following form [3]: 

 

ῳ=
Ὄ

ὑ0

1 +
Ὄ

ὲὌώ

ὶ2 1

                                                                                 (21)  

 

For cyclic loading, the equation of Ramberg-Osgood hysteresis model will be: 

 

ῳ± ῳὭ =
Ὄ± ὌὭ
ὑ0

1 +
Ὄ± ὌὭ
ὲὌώ

ὶ2 1

                                                             (22)  

 

where ȹ and ῳὭ are the displacements, H and ὌὭ are the lateral loadings, Ὄώ is the effective first yield, ὑ0 the 

initial elastic stiffness and n is the coefficient where n is ranged from 1 to 2. In Figure 7, monotonic loading 

represents the initial loading, which is the path 1-2 with n equal to 1. On the other hand, Eq. (22) is valid only for 

cyclic loading, which is the path 2-3-4 with n equal to 2. Figure 8 shows various values of ὶ2 which includes as 

limiting cases the elastic (ὶ2 = 1) and elastoplastic (ὶ2 = Њ) relations [14].  
 

 

Figure 7. Surface of Ramberg-Osgood H-ȹ model. Figure 8. Ramberg-Osgood factor ὶ2. 

 

5.2 Calibration of Ramberg-Osgood hysteretic model 

 

The Ramberg-Osgood hysteresis model which is also available in Ruaumoko program [6], can be used to 

simulate the hysteretic behavior of circular concrete-filled steel tube columns. The parameters of this method 

are: the effective stiffness (ὑὩὪὪ) , post-yield stiffness ratio ὶ2 as well as the positive and negative yield force Ὄ1 

and Ὄ2, respectively. The post-yield stiffness ratio, the positive and negative yield force can be defined as: 
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ὶ2 = 4 +
Ὢώ 235

225
,    Ὄ1 = Ὄώὥ,     Ὄ2 = Ὄ1                                                             (23)  

 

Factor (a) can be determined by the following expressions: 

 

ὥ= Ὧ1 + Ὧ2Ὢώ + (Ὧ3 + Ὧ4Ὢώ)
Ὀ

ὸ

3

+ Ὧ5 + Ὧ6ὪώὪὧ,       D/t ≤ max (D/t) 

                                                      (24) 

                                                      a=1,   D/t > max (D/t) 

 

where Ὧ1 =  1.207, Ὧ2 =  3.231e-04, Ὧ3 =  1.800e-06, Ὧ4 =  -6.328e-09, Ὧ5 =  -6.894e-03 and Ὧ6 =  8.946e-06. The 

steel yield stress (Ὢώ) and the concrete compressive strength (Ὢὧ) are expressed in MPa. Figure 9, illustrates the 

differences between calibration of Ramberg-Osgood model and finite element analysis model in three cases of 

specimen with the same Ὢὧ (20 MPa) and Ὢώ (235 MPa) but different D/t. 

 
 

Figure 9. Calibration of Ramberg-Osgood model in parametric study. 

 

As can be seen from the above three cases, impairment and stiffness phenomena do not appeared for IDR=5% as 

displayed in the case of square columns [3]. Also, the results from this method are in very good agreement with 

those obtained from ATENA program, thus confirming the validity of the proposed method. Moreover, the 

proposed method demonstrates good numerical performance for the behavior of circular CFT columns under the 

combination of axial force with bending moment. The accuracy of the proposed model is confirmed by 

comparing its results with those of experiments of Inai et al. [4] for circular CFT columns under a cyclic load 

protocol with variable intensity and constant axial load as shown in Figs 10 and 11. 

 

  
Figure 10. Calibrated of R-O model against experimental data (Inai et al.[3] – SC4-A4C and SC8-A4C). 
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Figure 11. Calibrated of R-O model against experimental data (Inai et al.[3] – SC6-A9C and SC4-A9C). 

  

6. CONCLUSIONS 

 

This study develops a proposed method which predicts the cyclic behavior and strength of circular concrete-

filled tube columns under axial and bending moment. Also, it outlines the construction of a simple and accurate 

hysteretic model for simulating the cyclic behavior of circular CFT columns. It worth noticing that, generally, 

circular CFT columns do not show deterioration phenomena such in case of square columns. Hence, one can 

successfully use this simple calibrated Ramberg-Osgood model for CFT columns either for individual element or 

as members of composite MRFs frames in order to determine their seismic response easily and reliably. 
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