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Abstract. Viscoelasticity is important in many polymer processes, where the material is highly viscous and 
elastic, as measured in rheometrical experiments. A polypropylene nanocomposite is studied. This material has 
shown experimentally high viscoelasticity. To model this behavior, an integral viscoelastic model of the K-BKZ 
type with multiple relaxation times has been used. The model is used first to fit the rheological data and then to 
simulate flow through injection molding dies, where apparent shear rates reach 1,000,000 1/s. At such 
extremely high shear rates, it was impossible in the past to achieve convergence. In the present work, a careful 
continuation study has been done to increase slowly the flow rate (hence the apparent shear rate) and achieve 
convergence up to the limits of experiments. The results for the pressure drop in the system are consistent with 
the experimental findings. 
 
 
1 INTRODUCTION 

Viscoelastic materials have properties combining viscous effects and elastic effects [1]. When they flow they 
show interesting phenomena not seeing with purely viscous fluids. These are called viscoelastic phenomena and 
they come under the scientific section of non-Newtonian Fluid Mechanics. The most important viscoelastic 
materials are polymer solutions and melts and rubber, because of the macromolecular structure in the chemistry 
of these materials [1]. 

Modeling of viscoelasticity is not easy because the constitutive equations that describe the behavior of the 
viscoelastic materials are complicated functions and functionals of the stress tensor. The science that deals with 
the development and solution of the constitutive equations is called computational rheology [2]. A plethora of 
constitutive equations exists that has developed models of differential and integral types. Among the most 
successful differential models are the Phan-ThienTanner (PTT) [2], Giesekus [3], and Pom-Pom models [4]. 
Among the most successful integral models are the K-BKZ models [5,6], and its variants the Wagner model [7] 
and the PSM model [8]. 

The solution of these models had been plagued early on (in the 1980's) by lack of convergence for relatively 
low elasticity levels [2]. These levels were determined by appropriate dimensionless numbers, such as the 
Deborah (De) and the Weissenberg (Ws) numbers. While these numbers go in real flow problems from 2 to 5, in 
the early simulations convergence was lost at values around 1. This was called the "High Weissenberg Value 
Problem" [9]. The solution to this problem came about in the late 1980's with the imposition in the numerical 
methods as solution variables the velocities, pressures, stresses and strain rates (DEVSS method), Streamline-
Upwind Petrov-Galerkin (SUPG) techniques to deal with the convective nature of the viscoelastic flows [10], 
and streamline integration for integral models [11]. 

Since the 1990's many problems have been solved with the above mentioned constitutive equations, but a 
special mention has to be made to the integral constitutive equation of the K-BKZ type with the PSM damping 
function [8], which has been used by many researchers around the world for the solution of real problems for 
real polymeric fluids (solutions and melts) used in polymer processing [12]. Thus, it was possible in the 1990's 
to solve benchmark problems, such as flows through contractions and extrudate swell [13], for apparent shear 
rates U/R up to 10 s-1, where U is the average velocity of the fluid and R is a characteristic length, usually the 
tube (die) radius. In the 2000's, the simulations went even higher and reached apparent shear rates of 1000 s-1 
[14]. The reasons for this type of convergence at such high apparent shear rates were a careful continuation 
strategy of incrementing the shear rates slowly from very low values (1 s-1) to higher ones as needed. 

New experiments with rubber and polypropylene nanocomposites showed that it was possible in injection 
molding dies to reach apparent shear rates of 1,000,000 s-1, with good results [15]. It was, therefore, a challenge 
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for the computational community to see whether it was possible to do such viscoelastic simulations and to try to 
reach these extremely high apparent shear rates, something that has never been done before. This is the subject 
matter of the present work. 

2 RHEOLOGICAL CHARACTERIZATION 

2.1 Material Used 
The material used is a polypropylene nanocomposite. This material is first rheologically characterized in the 

molten state. First, an Anton Paar MCR-501 device was used in the parallel-plate geometry to determine its 
linear viscoelastic moduli over a wide range of temperatures from 200oC to 230oC [15]. 
 
2.2 Capillary Flow Testing 

An Instron capillary rheometer (constant piston speed) was used to determine the entrance pressure (known 
also as the Bagley method) and the viscosity as a function of the wall shear stress, w, and apparent shear rate, 

3/32 DQA   , where Q is the volumetric flow rate and D is the capillary diameter. Two dies (an orifice die 

with D=0.1 cm and L/D=0.2 with a reservoir of Dres=1.2 cm, and a long die with L/D=20) were also used to 
determine directly the entrance pressure as a function of the apparent shear rate. The experiments were 
performed at various temperatures, from 200oC to 230oC for the polypropylene nanocomposite [15]. 

3 GOVERNING EQUATIONS AND RHEOLOGICAL MODELING 

We consider the conservation equations of mass, momentum, and energy for incompressible fluids under 
non-isothermal, creeping, steady flow conditions. These are written as [1-3]: 

     0u        (1) 

     0 p          (2) 

     
2 :pC u T k T u         (3) 

where  is the density, u  is the velocity vector, p is the pressure,   is the extra stress tensor, T is the 
temperature, Cp is the heat capacity, and k is the thermal conductivity. 

The viscous stresses are given for inelastic non-Newtonian fluids by the relation [1-3]: 

                  (4) 

where     is the apparent non-Newtonian viscosity, which is a function of the magnitude   of the rate-of-

strain tensor Tu u    , which is given by: 
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where    is the second invariant of   
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To evaluate the role of viscoelasticity in the prediction of entrance pressure, it is instructive to consider first 
purely viscous models in the simulations. Namely, the Cross model was used to fit the shear viscosity data of the 
polypropylene nanocomposite. The Cross model is written as [1-3]: 

     0
11 ( ) n


 

 
     (7) 

where 0 is the zero-shear-rate viscosity, is a time constant, and n is the power-law index. The fitted viscosity 
of the polypropylene nanocomposite by eqn (7) is plotted in Figure 1, while the parameters of the model are 
listed in Table 1. We observe that the material is very shear-thinning for shear rates above 1 s-1 giving a low 
power-law index n=0.2. The Cross model fits the data well over the range of experimental results. 

Parameter Value at 200oC Value at 215oC Value at 230oC 
0 11525 Pas 7228.4 Pas 4720.6 Pas 
 0.312 s 0.194 s 0.121 s 
n 0.20 0.20 0.19 

Table 1 : Parameters of the Cross model (eqn 7) fitting the viscosity data of polypropylene nanocomposite 



Evan Mitsoulis 

PP-5% filled

Shear Rate,  (s-1)

10-3 10-2 10-1 100 101 102 103 104

V
is

co
si

ty
, 

 P
a.

s)

101

102

103

104

exp. 200oC
Cross fit
exp. 215oC
Cross fit
exp. 230oC
Cross fit

.
 

Figure 1. Shear viscosity data of the polypropylene nanocomposite and its best fit with the Cross model (eqn 7) 

Viscoelasticity is included in the present work via an appropriate rheological model for the stresses. This is a 
K-BKZ equation proposed by Papanastasiou et al. [8] and modified by Luo and Tanner [16]. This is written as: 
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where t is the current time, λk and ak are the relaxation times and relaxation modulus coefficients, N is the 
number of relaxation modes, α and β are material constants, and IC, IC-1 are the first invariants of the Cauchy-
Green tensor Ct and its inverse Ct

-1, the Finger strain tensor. The material constant θ is given by 

     2
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N
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      (9) 

where N1 and N2 are the first and second normal stress differences, respectively. It is noted that θ is not zero for 
polymer melts, which possess a non-zero second normal stress difference. Its usual range is between 0.1 and 
0.2 in accordance with experimental findings [1,2,13]. 

As discussed above, experiments were performed in the parallel-plate and capillary rheometers for the 
polypropylene nanocomposite to rheologically characterize it. Figure 2a plots the dynamic moduli G' and G'' at 
the three temperatures of 200oC, 215oC, and 230oC. The model predictions obtained by fitting the experimental 
data to eqn (8) with a spectrum of relaxation times, λk, and coefficients, ak, determined by a non-linear regression 
package [17], are also plotted. The parameters found from the fitting procedure are listed in Table 2. The 
relaxation spectrum is used to find the average relaxation time,  , and zero-shear-rate viscosity, , according 
to the formulas: 
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Figure 2b plots a number of calculated and experimental material functions for the polypropylene 
nanocomposite at the three temperatures. Namely, data for the shear viscosity, ηS, the elongational viscosity, ηE, 
and the first normal stress difference, N1, are plotted as functions of corresponding rates (shear or extensional). 
The parameter  that controls the calculated elongational viscosity was fitted by using the extensional behaviour 
of the melt, which is essentially equal to 3 . It can be seen that the overall rheological representation of all 

material functions is excellent. 
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k k (s) ak (Pa) at 200oC ak (Pa) at 215oC ak (Pa) at 230oC 

1 1x10-4 3.49x105 2.34x105 2.10x105 
2 1x10-3 1.02x105 84765 97202 
3 1x10-2 90670 67957 65760 
4 1x10-1 35247 25051 18627 
5 1x10+0 5107.8 3167.7 2139.2 
6 1x10+1 448.12 157.03 121.76 
7 1x10+2 1.5428 0.13156 0.0633 
8 1x10+3 0.14936 0.01747 0.01285 
  = 2.42 

 = 14.87 s 
0 = 14460.8 Pas 

= 4.42 

 = 4.70 s 
0 = 8061.5 Pas 

= 3.33 

 = 4.65 s 
0 = 6014.4 Pas 

Table 2 : Relaxation spectrum and material constants for the polypropylene nanocomposite obeying the K-BKZ 
model (eqn 8) at different temperatures ( 
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Figure 2. Experimental data (symbols) and model predictions (lines) of the polypropylene nanocomposite using 
the parameters of Table 2 with the K-BKZ model (eqn 8): (a) storage (G′) and loss (G′′) moduli, (b) shear 

viscosity (S), normal stresses (1), and elongational viscosity (E) 

3.1 Non-Isothermal Modeling 

The non-isothermal modeling follows the one given in earlier publications [18,19] and will not be repeated 
here. Suffice it to say that it employs the Arrhenius temperature-shifting function, aT, given by [1,2]: 

    
0 0

1 1
( ) expT

g

E
a T

R T T




  
    

   
    (12) 

In the above, 0 is a zero-shear viscosity at T0, E is the activation energy constant, Rg is the ideal gas constant, 
and T0 is a reference temperature (in K). The activation energy constant E can be determined from the shift 
factors obtained by applying the time-temperature superposition to get the curves plotted in Figure 2a. It was 
found to be 53,500 J/mol, typical for a polypropylene resin. 

In the present work we have applied the above equation to derive the non-isothermal constitutive equation 
from the isothermal one. This method is based on the time-temperature superposition principle and simply 
consists of shifting the relaxation times k from the temperature history within the material’s internal time scale 
t' [18]. The equation used to shift the relaxation times in the material’s history is given by [18,19]: 

           0k k TT t T a T t         (13) 

where T' is the temperature at time t'. 
The viscoelastic stresses calculated by the non-isothermal version of the above constitutive equation (eqn 8) 

enter in the energy equation (eqn 3) as a contribution to the viscous dissipation term. 
The thermal properties of the polypropylene nanocomposite are given in Table 3. The various thermal and 

flow parameters are combined to give appropriate dimensionless numbers [18,19]. The relevant ones here are 
the Peclet number, Pe, and the Nahme-Griffith number, Na. These are defined as: 

(a) (b)
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where ( / )f U R   is a nominal viscosity given by the Cross model (eqn 7) at a nominal shear rate of U/R, and 

U (= A R/4) is the average velocity in the capillary die. The Pe number represents the ratio of heat convection to 

conduction, and the Na number represents the ratio of viscous dissipation to conduction and indicates the extent 
of coupling between the momentum and energy equations. A thorough discussion of these effects in non-
isothermal polymer melt flow is given by Winter [20]. 
 

Parameter Value
k 0.18 W/m/K
 0.79 g/cm3 

CP 2873.25 J/kg/K 

Table 3 : Thermal properties of polypropylene nanocomposite 

With the above properties and a die radius R=0.075 cm, and for capillary velocities 0.1875 < U < 18,750 
cm/s, the dimensionless thermal numbers are in the ranges: 18,000 < Pe < 1.8x10+9, 1 < Na < 10, showing a very 
strong convection (Pe>>1), and also a strong coupling between momentum and energy equations (Na>1). A 
value of Na > 1 indicates temperature non-uniformities generated by viscous dissipation, and a strong coupling 
between momentum and energy equations. 

4 METHOD OF SOLUTION 

The solution of the above conservation and constitutive equations is carried out with two codes, one for 
viscous flows (u-v-p-T-h formulation) [21] and one for viscoelastic flows [22]. The boundary conditions (BC) 
for the problem at hand are well known and can be found in our earlier publications [13,19]. Briefly, we assume 
no-slip and a constant temperature T0 at the solid walls; at entry, a fully-developed velocity profile is imposed, 
corresponding to the flow rate at hand, and a constant temperature T0 is assumed; at the outlet, zero surface 
traction and zero heat flux are assumed; at the centerline, symmetry is assumed. 

The present work follows along the lines of our recent publication on LDPE [23], where the necessary 
numerical checks were made for the pressure- and temperature-dependence of viscosity in non-isothermal 
viscous and viscoelastic flows. The solutions for the viscous flows were checked with both computer codes with 
identical results. The novelty in the present work is extending the simulations to extremely high apparent shear 
rates (1,000,000 s-1), something that had not been done before in both the viscous and viscoelastic simulations. 

The viscous simulations are extremely fast and are used as a first step to study the whole range of parameter 
values and die designs. The viscoelastic simulations admittedly are much harder to do and they need good initial 
flow fields to get solutions at such elevated apparent shear rates as 1,000,000 s-1. In our recent works [14,23], we 
explained how it was possible for the first time to do viscoelastic computations up to the highest apparent shear 
rates with good results. Briefly, the solution strategy starts at a given apparent shear rate from the viscous non-
isothermal solution, and then using this as an initial solution it continues for the non-isothermal viscoelastic 
solution with all effects present. 

Table 4 shows the apparent shear rate steps required to get the solution at different levels of viscoelasticity 
with both models (viscous Cross and viscoelastic K-BKZ) in an injection molding die labeled kLr with entrance 
angle 2=60o. In general, 17 steps were used to start from the lowest apparent shear rate of 5 s-1 and reach the 
highest rate of 1,000,000 s-1. The runs are always fast and well behaved for the viscous case. However, for the 
viscoelastic case, the runs are fast in the beginning (up to 100 s-1), after which there appears a bottleneck in the 
solution process with many more iterations needed (up to 1000 s-1), but after that and due to severe shear-
thinning of the polymer melt, it appears that iterations are few, the convergence rate is faster, and the solution 
process is well behaved. Thus, we were able to reach the 1,000,000 s-1 mark, something not done before, and 
with good convergence of the solution. In general, the two solutions and up to 1000 s-1 give similar pressure 
results, but after that the viscoelastic runs give higher pressure drops, reflecting the experimental data in a much 
better way than the viscous runs. 
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k 
A  (1/s) P (MPa) at 210oC 

Viscous Cross Model
P (MPa) at 210oC 

Viscoelastic K-BKZ Model 
1 10 0.86 0.65 
2 20 1.23 0.94 
3 50 1.78 1.45 
4 100 2.20 1.95 
5 200 2.67 2.53 
6 500 3.38 3.37
7 1,000 3.99 4.19 
8 2,000 4.66 5.25
9 4,000 5.37 6.56 
10 6,000 5.80 7.43
11 12,000 6.55 9.08 
12 18,000 7.00 10.05
13 33,000 7.71 11.38 
14 98,000 9.14 13.91 
15 150,000 9.76 15.49 
16 450,000 11.51 25.09 
17 1,000,000 12.23 35.43 

Table 4 : Steps for convergence of the simulations at different apparent shear rates in injection molding of 
polypropylene nanocomposite in die design kLr with entrance angles 2=60o 

5 RESULTS AND DISCUSSION 

Runs were done first for the capillary dies in which rheological characterization of the polymer took place. 
The die designs together with the finite element meshes are shown in Figure 3. The domain represents an 12:1 
abrupt circular contraction with an entrance angle 2 = 180°. The upper grid consists of 1700 elements, 7161 
nodes, and 22,261 unknown degrees of freedom (d.o.f.), while a 4-times denser grid (lower grid) is also used, 
having been created by subdivision of each element into 4 sub-elements for checking purposes of grid-
independent results. This checking consists of reporting the overall pressures in the system from the two meshes 
and making sure that the differences are less than 1% between the two results. Having fixed the model 
parameters and the problem geometry, the only parameter left to vary was the apparent shear rate in the die 
( 34 /A Q R  ). Simulations were performed for the whole range of experimental apparent shear rates in the 

capillary dies, namely from 10 s-1 to as high as 10,000 s-1. 
 

 
Figure 3. Finite element meshes used in the capillary die simulations with different die lengths L/D. The lower 

half has 4 times the number of elements of the upper half, for comparison purposes of the two meshes 
 
Figure 4a shows the results from the two dies (orifice and long die) at 215oC together with the experimental 

data up to apparent shear rates of 10,000 s-1. The dashed lines are the results from the viscous Cross model, 
while the solid lines are the results from the viscoelastic K-BKZ model. We note that the viscoelastic results are 
much closer to the experimental data, especially for the long die (L/D=20), for which the matching is excellent. 
On the other hand, in Figure 4b the effect of temperature for the long die is excellently captured by the 
viscoelastic simulations for the 3 temperatures, while the viscous simulations did not show such a good 
agreement (results not shown). 

L/D=0.2 L/D=20
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Figure 4. (a) Viscous simulations (dashed lines) and viscoelastic simulations (solid lines) together with 

experimental data (symbols) for the two capillary dies. (b) Viscoelastic simulations (solid lines) vs. experimental 
data (symbols) for the three temperatures in the long capillary die 

 
We continue our simulations with the flow of the polypropylene nanocomposite inside injection molding 

dies, for which there are 4 designs (see Table 5) shown in Figure 5 together with the FEM grids used.  
 

Die Design Values 
kLR R=0.125 cm, Rres=0.5 cm, L/R=5.888, 2=54o 
kLr R=0.075 cm, Rres=0.5 cm, L/R=9.813, 2=60o 
klr R=0.075 cm, Rres=0.5 cm, L/R=3.40, 2=118o 
klR R=0.125 cm, Rres=0.5 cm, L/R=2.04, 2=111.6o 

Table 5 : Die designs for the injection molding equipment 

 

(a) (b)

Die klr 

Die kLr 

Die kLR
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Figure 5. Finite element meshes used in the simulations for the injection molding dies 

 
The runs for these dies go up to 1,000,000 s-1, which is extremely high. The simulations with the viscous 

Cross model and the viscoelastic K-BKZ model are done with the FEM grids of Figure 5 and for the whole 
range of experimental data. The results are shown in Figure 6a-d for the 4 designs. It is seen that in all cases the 
viscous results are severely underestimating the experimental data, while the viscoelastic results show a 
tendency to get higher pressure drops in the system for apparent shear rates of 1000 s-1 and higher. Still though, 
the experimental data are higher at the extremely high shear rates, something that needs further investigation. 
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Figure 6. Injection molding data (solid symbols) and model predictions for 4 conical dies at 210oC for the PP-
filled melt using the Cross (eqn 7) and K-BKZ (eqn 8) models with the parameters listed in Tables 1 and 2 

6 CONCLUSIONS 

Numerical simulations have been performed for a polypropylene nanocomposite (5%) first in capillary dies 

Die klR 



Evan Mitsoulis 

and then in injection molding dies. The novelty of the simulations is to reach extremely high apparent shear rates 
(up to 1,000,000 s-1), which had not been done before. The models for the simulations were the viscous Cross 
model and the viscoelastic K-BKZ model. Whereas for the viscous model, the simulations do not show any 
difficulties in any value of apparent shear rate, the viscoelastic model showed a bottleneck in the range of 100 s-1 
to 1000 s-1, after which its convergence was good, due apparently to very high shear-thinning of the material at 
very high shear rates. 

The viscous model usually severely underpredicts the pressure drop in the system, while the viscoelastic 
model predicts correctly the rheology, and then underpredicts somewhat the pressure drops of the experimental 
data. Pressure-dependence of the viscosity, not taken into account in the present runs, may be an explanation for 
these discrepancies, and our future work will concentrate on that aspect of rheology to predict more 
satisfactorily the experimental data in these difficult experiments. 
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