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Abstract. One of the main challenges in biomechanics is the modelling of soft tissues. The theory of fractional 

calculus is a well-adapted tool to the modelling of many physical  phenomena, allowing the description to take 

into account some peculiarities that classical integer-order model simply neglect. Beside, memristive systems  

have a wide range of  applications in  modeling of the bioelectrical properties of  human skin, human blood,  

storage, neural networks, chaotic systems and so on. In this work, we use the concept of fractional  order  

memristive elements for biomehanical modeling of soft tissues, here bioelectrical properties of  human skin  as 

well as human blood.  In literature, some  models of  human skin based on classical memristive approach are 

obtained but further improvements to the memristive models are possible where  computational models are 

developed and presented. Further, we are interested in  step input response for proposed Cole impedance 

models excited by a step current. Suitable numerical aproximations of inverse Laplace  transform  are  used with 

respect to the simulation of the corresponding fractional (integro)-differential equations. 
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1 INTRODUCTION 

The electrical property of any biological tissue depends on its intrinsic structure. Electrical admittivity of 

human tissue may be predominantly conductive or capacitive, or a combination of these, depending on tissue 

type, availability of charge carriers, frequency of the applied electric field, and is carried out by ions, dipoles or 

electrons, as well as holes (semiconductor) [1]. The relationship between the data of the applied stimulus and the 

response obtained as a function of frequency provides the impedance spectrum of tissues studied [2]. Transfer 

function analysis is a mathematical approach to relate an input signal (or excitation) and the system response. For 

an example, bioelectro-physical properties of human skin tissue, like most other soft tissues, exhibit electrical 

behavior [3,4]. To analyze skin impedance effectively, it is very desirable to introduce the skin impedance model. 

Electrical impedance studies in biological systems, including human skin, generally, relate to direct 

measurements of impedance and phase angle as functions of frequency, voltage, or current applied [4]. This 

research employs an electrical impedance model, which includes constant phase element (CPE).The Cole 

impedance model was postulated in its final form by Cole in 1940 [2]. This impedance model  is based on 

replacing the ideal capacitor in the Debye model [3,4] for a general element (CPE). A special case of the general 

fractance device of fractional order is referred to as  (CPE) which have shown numerous applications in the field 

of bioimpedance, which measures the passive electrical properties of biological materials, [4]. On the other hand, 

the theory of fractional calculus (FC) is a well-adapted tool to the modelling of many physical phenomena, 

allowing the description to take into account some peculiarities that classical integer-order model simply neglect. 

Application of FC in classical and modern physics greatly contributed to the analysis and our understanding of 

physico-chemical and bio-physical complex systems [5]. The importance of fractional order mathematical models 

is that they can be used to produce a more accurate description, and so give a deeper insight into the physical 

processes underlying long range memory behaviors. This property leads to simple (fractional) models, contrary to 

classical (integer) models that frequently require elaborated expressions. From mathematical point of view, the 

fractional integro-differential operators (FC) [5,6], are a generalization of integration and derivation to non-

integer order (fractional) operators. Therefore, our understanding of biological systems organization requires FC 

as a mathematical tool [7,8]. A large number of useful biophysical studies reported applications of FC; however, 

they were limited to relatively small number of biological model system. Particularly, a memory function 
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equation, scaling relationships and structural–fractal behavior of biomaterials and mathematical model based on 

fractional calculus, were used for the physical interpretation of the Cole-Cole (Cole) exponents [4]. So, three 

expressions for the impedance allow one to describe a wide range of experimental data: Cole–Cole function, 

Cole–Davidson function and Havriliak–Negami function [2,7,8]. 

      Also, in this paper we suggest that the memristor is a necessary and useful building block modeling 

bioelectrical phenomena.We present the connection between FC (fractional order integral and derivative)  and 

behavior of the memristive systems. As we will  see, the fundamentals of FC are based on the memory property 

of the fractional order integral/derivative and therefore this connection is straightforward. Memristor is a new 

electrical element which has  been predicted and described in 1971 by Leon O. Chua [9] and for the first time 

realized by HP laboratory in 2008. He proved that memristor behavior could not be duplicated by any circuit 

built using only the other three elements (resistor, capacitor, inductor), which is why the memristor is truly 

fundamental. In this work, we use the concept of fractional  order  memristive elements for biomehanical 

modelling of soft tissues, here bioelectrical properties of  human skin as well as human blood.  In literature, some  

models of  human skin based on classical memristive approach are obtained but further improvements to the 

memristive models are possible. Also, a number of methods to extract the Cole impedance parameters have 

required measurement of either the impedance or frequency response of connected materials.Recently,in paper 

[10] a method of non-linear least squares fitting is applied to extract the single and double-dispersion Cole 

impedance parameters from collected current-excited step response datasets without requiring direct impedance 

measurements,[11]. In this paper, we proposed the  human skin/blood structure as a more complex system where 

we have used fractional calculus and memristive approach to model bio-electrical impedance and applied derived 

models to describe bioimpedance properties of human skin as well as blood a test systems.Finally, we simulated 

step responses of  three different dispersion Cole impedance models excited by a step current.  

2 MEMRISTIVE SYSTEMS-FRACTIONAL APPROACH 

2.1 Basic  facts of memristive systems 

       Memristive systems  are also used for modelling of  biomechanical systems. Namely,  memristor as nonlinear 

element was postulated by Chua in 1971 [9] by analyzing mathematical relations between pairs of fundamental 

circuit variables and realized by HP laboratory in 2008. Chua proved that memristor  behavior could not be 

duplicated by any circuit built using  only the other three elements (resistor, capacitor, inductor), which is why 

the memristor is truly fundamental.The four basic circuit variables, current i, voltage v, charge q and magnetic 

flux φ, give six different, possible combinations. The complete set of combinations is illustrated in Figure  1. 

 

Figure 1. Connection of four basic electrical elements  

Memristor is a contraction of memory resistor, because that is exactly its function: to remember its history. The 

memristor is a two-terminal device whose resistance depends on the magnitude and polarity of the voltage 

applied to it and the length of time that voltage has been applied. The missing element - the memristor, with 

memristance M-provides a functional relation between charge and flux, d Mdqϕ = . However, the memristance is 

not necessarily linked to magnetic systems and can be regarded as the ratio between the time dependent voltage 

and current:  

[ ]( ) / ( )d Mdq vdt Midt M v t i tϕ = ⇒ = ⇒ = Ω .                                          (1) 

The memristor can be thought of as a variable resistor where the resistance is dependent on the amount of charge 

having passed the device in a given direction. A linear time-invariant memristor is simply a conventional resistor. 

In 1976 Kang and Chua [11] generalized the memristor concept to a larger class of nonlinear systems, called as 

‘memristive systems’. 

2.2  Fractional–order calculus definitions 

      Further, we present the connection between fractional  calculus (fractional order integral and derivative) and 

behavior of the memristive systems.  One important property of fractional operators is that they capture the 

history of all past events contrary to what occurs with integer derivatives that are ‘local’ operators. This 

means that fractional order systems have intrinsically a memory of the previous dynamical evolution. 
From mathematical point of view, the fractional integro-differential operators are a generalization of integration 
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and derivation to non-integer order (fractional) operators. The most used definitions of a fractional derivative 

of order a are, respectively, the  Riemann–Liouville, Grünwald-Letnikov and Caputo formulations: 
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The Caputo and Riemann-Liouville formulation coincide when the initial conditions are zero,[6]. For 

convenience, Laplace domain is usually used to describe the fractional integro-differential operation for solving 

engineering problems. For zero initial conditions [6], Laplace  transform of fractional derivatives (Grunwald-

Letnikov, Riemann-Liouville, and Caputo’s), reduces to:  ( ){ } ( )0 t
L D f t s F sα α= . In electrical systems was 

proposed the concept of fractional impedance, sometimes called ‘‘fractor’’. The idea occurs interpolating 

between the three lumped electrical elements, namely the resistor, inductor and capacitor. Since these elements 

implement physically three consecutive (integer order) differential relations, we conceive the possibility of 

having other elements in between (i.e., of fractional order).  

2.3  Fractional order memristive systems 

       Westerlund et al. [13] proposed a new linear capacitor  model and described behavior of real inductor [14]. 

For a general input voltage ( )v t  the current is   

                                                  ( )C ( ) / ( )ti(t) d v t dt C D v t
α α α= = ⋅                                                           (3) 

 where C is  capacitance  of  the capacitor and α order is related to the losses of the capacitor. Also, for a general 

current in the inductor the voltage is  

( )( ) ( ) / ( )tv t L d i t dt L D i tα α α= = ⋅                                                          (4) 

where  L is inductance of the inductor  and constant  α  is related to the  „ proximity effect“.  In that way, we can 

enlarge the family of elementary circuit elements, to fractional circuit elements in order to model many irregular 

and exotic nondifferentiable phenomena which are common and dominant  to the nonlinear dynamics of many 

biological, molecular systems and nanodevices. Fractional circuit element can be  characterized by a constitutive 

relation  

( )( ) g ( )v t i t
α β=                                                                                    (5) 

 where                                            ( )( )v t D v t
α α= , ( )( )i t D i t

β α=                                                                       (6) 

are any two complementary constitutive  variables (i.e., current, charge, voltage, or flux) denoting  input and 

output of the system and ( )
D

α β  denotes  fractional operator (fractional derivative or  fractional integral). For 

example, in case of  integer order systems ,when  0, 0α β= =  and g  is a linear function of  i(t): v(t) = R  i(t), R 

is the  resistance. The following are some other simple cases with integer  α, β: resistor (v, i), (α = 0, β =0); 

inductor (φ, i), ( 1, 0α β= − = ); capacitor (v, q), ( 0, 1α β= = − ); memristor (φ, q), ( 1, 1α β= − = − ); 

memcapacitor (φ, 
( )2

i
−

), ( 1, 2α β= − = − ); meminductor (
( )2

v
−

,q), ( 2, 1α β= − = − ). For other (α, β) pair and 

more complex response functional g, there could be other very different devise. Moreover, the more convenient 

form of the current - voltage equation for the memristor is [15] 

( )( ) ( ) ( )
0 0

t t

M q t i t dt v t dt=∫ ∫                                                                   (7) 

If  M(q(t)) is a constant (M(q(t)) ≡ R(t)), then we obtain  Ohm’s law R(t) = V (t)/I(t). If M(q(t)) is nontrivial, the 

equation is not equivalent because q(t) and M(q(t)) will vary with time. Furthermore, the memristor is static if no 

current is applied. This is the essence of the memory effect, which allow us extending the notion of memristive 

systems to capacitive and inductive elements in the form of memcapacitors and meminductors whose properties 

depend on the state and history of the system [16, 17]. Similar to capacitor and inductor, the memristor is also not 

ideal circuit element and we can predict the fractional order model of such element. Applying the fractional 

calculus to relation (7), we obtain the following general formula  for the fractional-order memristive systems:  
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( ) v( )t tM D i t D t
α α− −⋅ = .                                                                   (8) 

One can present memristive systems in general  

                                                     ( ) ( )v( ), ,t tK D i t D t R
γ β β γ⋅ = ∈                                                            (9) 

where K is the resistance, inductance, capacitance or  memristance, respectively. Applying the Laplace transform 

technique to previous expression, we get the following relation for resulting impedance of the memristive system  

(MS) having properties equivalent to real electrical elements with fractional order mathematical models generally 

described as  

( ) ( ) / , ,k
MSZ s V s I(s)= Ks K R k Rγ β+= ∈ = − ∈                                               (10) 

where k is the real order of the memristive system and for  the ideal electrical elements has the following 

particular values, if:  

[ ]0, 0, 0,k K Rγ β= = = = Ω , [ ]1, 1, 0, 1 /k K C Fγ β= − = − = = , [ ]1, 0, 1,k K L Hγ β= = = − = , (11) 

[ ]0, 1, 1, ( )k K M tγ β= = − = − = Ω  

We are able to define arbitrary real order k for the memristive  system behavior description (10). The amplitude 

of this impedance function is 20A k= ⋅  and the phase angle is ( )/ 2 ,k k Rϕ π= ∈ .Then the impedance of  

fractional capacitor  is: 

( ) ( )/21 1
( )

j
C CPEZ s Z s e

C s C
α

απ
α α

α αω

−
= = =                                                   (12) 

Electrical elements  with such property are called constant phase element (CPE) for certain frequency range. In 

that way,  the memcapacitor is believed to be useful within bioelectricity and neuroscience, potentially mimicking 

the widely used CPE. 

3 SOME RESULTS RELATED TO COLE AND COLE-COLE EQUATION 

In the field of bioimpedance measurements the Cole impedance  model, is widely used for characterizing 

biological tissues and biochemical materials. The single-dispersion Cole model, shown in Fig. 2(a), is composed 

of three hypothetical circuit elements:  high-frequency  resistor R1, a resistor R1 and a CPE (C1, 1α ). This model 

has become  very popular because of its simplicity and good fit with measured  data, illustrating the behaviour of 

impedance as a function of frequency. The impedance of the single-dispersion Cole model is  then given by  

( )
1

1

1 11

R
Z s R

s R C
α α∞= +

+
                                                     (13) 

 

    
                             a)                                                      b) 

Figure 2a). Single-dispersion Cole impedance model, b) Double-dispersion Cole impedance model 

An expanded model, the double-dispersion Cole model, is used to accurately  represent the impedance over a 

larger frequency  range or for more complex materials. This model, shown in  Fig. 2b, is composed of an  

additional parallel combination of a resistor (R2) and CPE in series with the single-dispersion Cole model with 

total impedance given by 

( )
1 2

1 2

1 1 2 21 1

RR
Z s R

s R C s R C
α α α∞= + +

+ +
                                              (14) 

 

    

Figure 3. Equivalent circuit single-dispersion fractional Cole model according [8] 
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One of them, the Cole impedance model (for the specific electrical resistance) was introduced in its final form 

[4], by introducing CPE, with impedance ( ) ( )1/ CCPEZ j
α

αα ω ω= , or ( ) 1/ CCPEZ s s
α

αα =  in the s-

domain.    A complex impedance of the system is (Cole equation for single-dispersion model) 

( ) ( )
( )

0
1

||Z R R R
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ω ∞ ∞= + −
⋅                                                    (15)   
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as well as 0R  denotes a low-frequency resistor and R∞  is a high-frequency resistor, ( ]0,1α ∈  is fractional CPE 

exponent-index. For 0α → , ( ) 0Z Rα ω → . In [8] equation for τα  is ( Cα is a fractional order capacitance)  

( )0R R Cα
α ατ ∞= − ⋅   and this constant represents relaxation time constant. Recently, in paper [18] we 

introduced and proposed revisited continuous (distributed-order) Cole model as well as its approximation 

modified single-dispersion Cole model using modified distributed-order operator based on the Caputo-Weyl 

fractional derivatives,see Fig.3, The above approximation, in addition to defining the area where they should be 

fractional indices, in the range of high frequencies, may better describe the electrical properties of the system. 

 

 

Figure 4. Electrical continuum model of the skin, based on the Cole equation 

In that case, the skin is, in the electric sense, taken as serially continually many connected non-interactive, linear,  

reduced Cole elements p(α)·(R0 - R∞) ||Cα(j·ω)α and one R∞ (Fig. 4).  Resistance p(α)·(R0 - R∞) characterized 

each individual reduced Cole element, where p(α) is a real non-negative function; , 0 1ατ α< ≤ are corresponding  

time relaxation constants, as a non-negative function ofα : ( ) ( )( )
1/

0C p R R
α

α ατ α ∞= ⋅ ⋅ − . The equivalent total 

impedance ( )Zc ω  of this new electric circuit is given by the equation 
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or, this expression  (17) is the continuous generalization of the Cole equation.  One of the main difficulties when 

using the distributed model is the large number and functionality of the distribution of material constants 

depending on the fractional index in relation to the number of experimental data. Here, we can obtain  a discrete 

approximation of proposed  Cole  model  as discrete series of reduced Cole elements and R∞ .  
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Equations for the two-dispersion Cole model ( n=2 in (18)) is 
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Stratum corneum 

Sweat ducts 

 

4   EXAMPLE OF FRACTIONAL ORDER OF MEMRISTIVE SYSTEM: HUMAN  SKIN      

      Fundamental electrical mechanisms behind many bioelectrical phenomena may therefore involve significant 

memristive effects. As far as the biomedical field is concerned, there are a many observed hysteretic or nonlinear 

i-v characteristics are found in the field of bioimpedance and its allied fields [17,19,20] that may potentially fit 

better in a memristive framework than in any other. The memristor shows many interesting features when 

describing electrical phenomena, especially at small (molecular or cellular) scales and can in particular be useful 

for bioimpedance and bioelectricity modeling. In  paper [20] authors presented model for sweat duct conductivity 

based on memristor theory. Current responses of human sweat capillaries are shown to behave as memristive 

systems since the resistance of the capillaries depends on the current history, i.e. behaving memristively. Our skin 

behaves as a memristor due to the dominance of the sweat ducts on the skin conductance at sufficiently low 

frequencies [9,20]. The equivalent electrical model of the human skin may therefore involve the memristor as 

suggested in Fig. 5. The new thing in this manner is that the traditional resistor for sweat conductance is 

substituted with the  memristor  of fractional order in contrary to  of memristor of integer order,suggested in [19]. 

In human skin, the memristance property will be vanished at high frequency.  
 

 

 

 

 

 

Figure 5. Equivalent electrical model of  human skin with memristor of fractional order 

       . 

The primary property of the memristor is the memory of the charge that has passed through it, reflected in its 

effective resistance M(q), ( ) (v t M q))i(t)= .This is a generalization of the memristor concept where the 

memristance is controlled by any number of additional state-variables (in our case just one,x(t)), which may also 

be coupled to each other in complicated nonlinear ways. Thus, memristive systems should be rich enough to 

capture some of the nonlinearities that are ubiquitous in bioelectrics. In paper [19] authors showed that 

electro/osmosis in human sweat ducts are memristive nature as follows: 

                            ( )( )1 , 1M R x R xτ τ τ τ= + − ≈ − ≫ ,                                             (20) 

where 2/ , / 2 , / ,R D A r d x w D A rρ τ π= = = = , ρ resistivity of the fluid  as well as the geometry of the duct 

2
, , , ,D r A d A rπ= , D  is the total length of the duct, and 2 ,a rd d rπ≈ ≪   denoting the thickness of the film. 

Also, it is fullfilled that  

, /
dx dq

k ki(t) k V
dt dt

βρ= = =                                                     (21) 

Here, in this paper we introduce the fractional differential equation of memristor element and it can be given by 

,
d x

ki(t)
dt

α

α
=                                                                      (22) 

By differentiating both sides of (22)  and combining  it yields: 

( )
d M d x

R R ki t λi(t)
dt dt

α α

α α
τ τ= − = − = −                                                   (23) 

Finally, one can determine ( )M t :              

                                                            ( ) tM t D i(t)
αλ −= − .                                                                 (24) 

Taking into account ( ) (v t M q))i(t)=  and procedure of fractional integration [21] memristor resistance as a 

function of the input voltage can be obtained by:  
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( ) ( ) ( )11 1 1

0
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t

M inR M M t s v s ds
αα α α α α λ

−+ + += = − + −∫                                       (25) 

The equivalent total impedance ( )HSmemZ s  of this new electric circuit (Fig.5)  is given by  
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Z s R R R R CPE sHS α+ +∞ ∞ ∞= −                                            (26) 

or                     ( )
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+ + + +
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On the other side, in  study  [22] authors observe that, the human blood also possess the same characteristics as 

like memristor. In the vein of blood, skin also possesses hysteresis like characteristics at very low frequency and 

it is vanish at high frequency. Equivalent electrical cirucit for blood tissue, erythrocytes, leukocytes and plasma is 

similar as Fig. 1a) with , ,S P PR R C  so one can obtain  

( ) ( )
1

P
R

S P P Sblood

p p

Z s R R C s R
s R C

α
α

= + = +
+

                                            (28)                                            

which include memcapacitor of fractional order,1 / PC s
α .On the basis of Cole’s proposal to add a degree of  

extra freedom to solve the RC circuit for characterization purposes and to improve the correlation in the 

adjustment  to experimental data, they obtained  , , ,s P PR R Cα  as  follows: 

        erythrocytes 80.975, 673.7 , 2.29 10 , 120710S P PR C F Rα −→ = Ω = ⋅ = Ω ,                                               (29) 

        leukocytes 8
0.99, 475.6 , 2.188 10 , 341550S P PR C F Rα −→ = Ω = ⋅ = Ω , 

         plasma 80.99, 496.5 , 2.1517 10 , 273750S P PR C F Rα −→ = Ω = ⋅ = Ω ,   

 

5 NUMERICAL EXAMPLES 

       In fractional order systems we have two transfer functions of particular interest,  the Cole–Cole  and 

Davidson–Cole and Havriliak–Negami (HN) models [23] given respectively by: 

( )
0

/1C
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ω
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where 0, , ,R K Rα γ ω +∈ ∈   and s denotes the Laplace variable. Also, we using { }..L  the Laplace operator and 

t time, we have known the relationships: 
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where ( ) , ,z zΓ ∈ℂ is the Gamma function, and ( )
( ),

0

k

k

z
E z

k
α β

α β

∞

=

=
Γ +∑  and ( )

( )
( )

( ),

0

1

!

k

k

k z
E z

k k

γ
α β

γ

γ α β

∞

=

Γ +
=

Γ Γ +∑  

represent the two and three parameters Mittag-Leffler functions, respectively. 

 

 5.1 Excitation Signals  Response 

Beside, due to complexitity of transfer functions,see (27) we are interested here to obtain impulse and  

particularly step input response. Also, in paper [10] it is applied a suitable method to extract the single and 

double-dispersion Cole impedance parameters from collected current-excited step response datasets without 
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requiring direct impedance measurements. In this section, the response of fractional order different memristive 

systems under different input current-step signals is  obtained and presented.  

a) We consider a case of   erythrocytes 8
0.975, 673.7 , 2.29 10 , 120710S P PR C F Rα −→ = Ω = ⋅ = Ω   with 

Cole impedance model (28)  where the s-domain expression of the output voltage  of (28) induced  by a 

current-step of amplitude 0I  

( ) ( ) 0( )
1

P
R

Seryt

p p

I
v s I s Z s R

s s R Cα

 
 = = +
 + 

                                           (32) 

The time domain expression of the output voltage ( )v t  is calculated numerically, (see Fig.6) using a specific 

class of techniques for the numerical inversion of Laplace transforms (NILT), (33) namely based on a complex 

Fourier series approximation, and connected with a quotient-difference algorithm to accelerate the convergence 

of infinite series arising in the approximate formulae, [24]: 

( )
1

1

11

exp( ) ... ( )exp , , 2 /

n

n n
T

i i i i i i i i i

m m ii

f t ct F s j m t mτ ω π τ
∞ ∞

−

=−∞ ==

   
   = Ω = Ω Ω =

  
  

∑ ∑ ∑∏ɶ      (33) 

On Fig.  6  it is  presented influence of parameter pC   for  three values: 

8 7 6
1 2 32.29 10 , 2.29 10 , 1.15 10 ,P P PC F C F C F

− − −= ⋅ = ⋅ = ⋅  

 

Figure 6. Simulated step responses of (a) single dispersion Cole impedance models excited by a step current of 

0.1 mA 80.975, 673.7 , 2.29 10 , 120710S P PR C F Rα −→ = Ω = ⋅ = Ω  

b) We consider a case of  discrete approximation of proposed electrical continuum Cole model n=2, using 

(19) for 1 0.1, 0.5, 0.95p p= =  

 

Figure 7. Simulated step responses of  discrete approximation Cole impedance model excited by a step current of 

1 mA, 
1 2

3 3
0 1 20.17 , 95 , 2.2710 , 0.88510 , 0.885, 0.733R k R k α ατ τ α α− −

∞ = Ω = Ω = = = =  

c)Finally, we present  step responses for equivalent electrical model of  human skin with memristor  (for  Rm 

=const   10,30,50mR = Ω ) 
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Figure 8. Simulated step responses of (27) model excited by a step current of 10 mA,    
3

0500 , 11.7 , 510 , 0.72R R k τ α−
∞ = Ω = Ω = =  

6 DISSCUSIONS 

In this paper we applied the concept of fractional  order  memristive elements for biomehanical modeling of soft 

tissues, specially  human skin  as well as human blood. We presented equivalent electrical model of human skin 

discrete approximation continuum Cole impedance model as well as expended electrical model of human skin 

which include influence of sweat ducts. Recently, it is shown that using suitable fitting method one can extract 

the corresponding Cole impedance parameters from collected current-excited step response datasets without 

requiring direct impedance measurements. Finally, we simulated step responses of  three different dispersion 

Cole impedance models excited by a step current. Suitable numerical aproximations of inverse Laplace  

transform  are  used which are based on a complex Fourier series approximation.  
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