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Abstract. The flow of a rarefied gas confined in a two dimensional cavity due to non-isothermal walls is 

investigated. Two set-ups of boundary conditions are considered. In the first case the top and bottom walls are 

kept at constant temperatures and a linear temperature distribution is applied along the lateral walls and in the 

second case three walls are kept at constant low temperatures and the fourth one is heated. Since the flow is far 

from local equilibrium in a wide range of the Knudsen number, a kinetic approach based on the Bolltzmann 

equation is required. The flow is simulated by the deterministic solution of the Shakhov kinetic model and 

stochastically by implementing the DSMC method. Although the investigated flow configuration is simple, it is 

rich in non-equilibrium phenomena. 

 

 

1 INTRODUCTION 

Rarefied gas flows are characterized by conditions far from local equilibrium. The measure of the departure 

from equilibrium is the Knudsen number, denoted as Kn , which is defined as the ratio of the mean free path over 

a characteristic length of the problem. For 0.1Kn  , i.e., when the flow is in the so-called transition and free 

molecular regimes, the traditional Navier-Stokes-Fourier approach is no longer valid, and a more fundamental 

kinetic type approach should be applied.  

Such flows have lately received considerable attention due to their theoretical interest and their 

implementation in several emerging technological fields including vacuum packed MEMS [1], 

micropumps/microactuators [2,3] and vacuum systems [4]. They are also commonly applied in benchmarking of 

novel numerical schemes [5,6,7]. In the present work a review of some recent developments in temperature 

driven rarefied gas flows in cavities subject to two different boundary condition cases is presented. The first case 

concerns a cavity where the top and bottom walls are kept at constant temperatures, while a linear temperature 

distribution between those temperatures is applied at the lateral walls [8]. In the second case the three walls are 

kept at constant low temperatures while the fourth is heated by a given heat flux distribution [9]. Modeling is 

based on the non-linear Shakhov model [10], while the DSMC method [11] is used for benchmarking purposes. 

2 FLOW CONFIGURATION 

A rarefied monatomic gas is confined in a 2D enclosure of side length W . The physical space variables are 

denoted by  ', 'x y  with / 2 ' / 2W x W    and 0 'y W  . Due to the temperature difference of the bounding 

walls a steady-state heat flow through the enclosure is developed defined by the heat flux vector 

   ', ' , ', 'x yQ x y Q x y   Q  and due to non-equilibrium (rarefied) phenomena a flow field is also developed, 

defined by the velocity vector    ', ' , ', 'x yU x y U x y   U . It is noted that in rarefied flow configurations, as the 

present ones, gravitational forces are commonly neglected. The gas temperature and number density are denoted 

as  ', 'T x y  and  ', 'N x y   respectively, while the pressure is given by the equation of state BP Nk T , where 

Bk  is the Boltzmann constant. 

At this point it is convenient to introduce the following dimensionless quantities: 
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The dimensionless physical space variables are  1/ 2,1/ 2x  ,  0,1y  and the quantities n ,  , p ,  ,x yu u  

and  ,x yq q  are the distributions of the dimensionless number density, temperature, pressure, velocity and heat 

flux respectively. The reference quantities are denoted by the subscript zero. The reference pressure is 

0 0 0BP N k T  and the most probable molecular speed is 0 2 /Bk T m  , where m  is the molecular mass. The 

hard sphere model is used to model intermolecular collisions, providing for the viscosity the expression 

0    where 
0  is the viscosity at reference temperature 

0T . The flow parameter characterizing the flow is 

the reference Knudsen number, defined as 
 

 0 0

0

02
Kn

PW

 
  (2) 

 

The two boundary condition cases are distinguished: 

Case 1: the top and bottom walls are kept at constant temperatures 
1T  and 

2T  respectively with 
1 2T T  and a 

linear temperature distribution of the form  2 2 1 '/ST T T T y W    is applied at the lateral walls. So, apart from 

the reference Knudsen number, the other parameter characterizing the flow is the temperature ratio 
1 2/T T . In this 

case the temperature of the hot wall is used as the reference temperature (
0 2T T ). The average number density 

in the enclosure is 
0N  and 

0P  is taken from the equation of state. 

Case 2: three walls are kept at a constant temperature 
CT  and the forth is heated by a constant heat flux of 

magnitude 
HQ . In this case the second parameter characterizing the flow is the dimensionless applied heat flux 

 0 0/H Hq Q P . The reference temperature in this case is the average temperature of the heated wall, while the 

reference number density and pressure are taken as in case 1. 

3 DETERMINISTIC AND STOCHASTIC MODELING 

3.1 Deterministic modeling 

The deterministic modeling is based on the direct solution of the dimensionless Shakhov model equation. 

Also, the well-known projection procedure can be written as [8,9] 
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with  ,x y   denoting the two components of the molecular velocity vector and 
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while the reduced local Maxwellians are 
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The macroscopic quantities of practical interest are then taken as moments of the two reduced distribution 

functions   and  : 
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The purely diffuse Maxwell boundary conditions have been implemented and the outgoing distributions at the 

boundaries denoted by    and   , are expressed as 
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where 
wn  is a parameter calculated in terms of the ingoing distribution, satisfying the impermeability conditions 

and 
w  is the imposed dimensionless wall temperature. In Case 2, at the heated wall, 

w  is part of the solution 

and the problem closes by applying the constraint  ,0y Hq x q . Here, without loss of generality, the bottom 

wall is considered as the heated wall and these parameters are defined by the expressions [9] 
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where 
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with    and    denoting the ingoing distribution. 

The above set of integro-differential equations (3-6) coupled with the expressions (7-9) subject to boundary 

conditions (10-12) are solved numerically discretizing the physical space by a control volume approach and the 

molecular velocity space by the so-called discrete velocity method. The iterative process of the algorithm is 

terminated when a convergence criteria of the from 
 

  ( ) ( ) ( 1) ( ) ( 1) ( ) ( 1) ( ) ( 1) 10

, , , , , , , ,
,

max 10k k k k k k k k k

i j i j xi j xi j yi j yi j i j i j
i j

n n u u u u               . (13) 

 

is fulfilled. In the above expression k  denotes the iteration index and 
 k

  the error after k  iterations.  

3.2 Stochastic modeling 

Stochastic modeling is based on the DSMC method, described in [11]. In this method the real process of 

particle motion is divided into two steps, the ballistic motion of the particles over a distance proportional to their 

velocities, which is purely deterministic and the collisions between particles that is done in a stochastic manner, 

following the traditional No Time Counter (NTC) scheme [11] together with the HS molecular interaction model. 

The implementation of the given heat flux boundary condition for case 2 is described in [12]. The interaction of 

the particles with the solid boundaries is purely diffuse. The physical domain is divided into 100 100  square 

cells with a size smaller than the mean free path, while 510 - 610  model particles are used and the time step is 

chosen to be about 1/ 3  of the cell transversal time. The sampling of the macroscopic properties starts after the 

steady state has been achieved and carried out by volume base averaging for over   55 15 10   time steps giving 

a sample size of approximately 9 1010 10  samples per cell, which is sufficiently large to reduce the statistical 

scatter. 

4 RESULTS AND DISCUSION 

Results are presented for both cases, starting with Case 1. Simulations have been conducted in a wide range 

of Knudsen numbers and temperature ratios. More specifically, these parameters vary as 00.01 10Kn   and 

1 20.1 / 0.9T T  . The effect of the gas rarefaction and the temperature ratio on the flow field can be seen in Fig. 

1, where the streamlines and temperature contours are shown for values of the Knudsen number covering the 

transition to free molecular regimes and for small and large temperature differences. We observe that a stratified 
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temperature field is developed in all cases. In Figs. 1 (a) and (c), in the early transition regime, the whole flow 

domain is covered by vortices that near the lateral walls have a velocity heading from cold-to-hot regions. This 

behavior is expected, as the leading mechanism for this flow is thermal transpiration or creep, which leads to 

motion from cold to hot. What is very interesting is that for larger degrees of rarefaction Figs. 1 (b) and (d) those 

vortices have been squeezed and two more vortices appear, counter-rotating to them having velocities in the 

vicinity of the lateral walls from hot-to-cold regions, contrary to thermal creep flow. The formation of these 

vortices as well as the mechanism of their creation, have been extensively studied in [8]. It is concluded that this 

hot-to-cold flow along the lateral walls are due to the interplay between the ballistic and collision motion of the 

particles. Moreover, as the temperature difference is increased those unexpected flow structures expand covering 

larger parts of the enclosure, while for small temperature differences they are restricted close to the lateral walls. 

 

 

Figure 1. Streamlines and temperature contours in a square enclosure for 1 2/ 0.1T T  , 0.9  and 

0 0.1Kn  ,10 (case 1). 

More information regarding the flow field near the lateral walls can be taken from Fig. 2, where the tangential 

velocity yu  along the lateral walls is given for small and large temperature differences and various values of the 

Knudsen number, ranging from the slip up to the free molecular regimes. For both temperature ratios when the 

Knudsen number is small  0 0.01Kn   the direction of the velocity on the whole lateral walls is from cold-to-

hot, indicated by  0yu   and as the Knudsen number is increased some regions start having positive tangential 

velocities. For 0 1Kn   and 10  (transitional and free molecular regimes respectively) along the lateral wall there 

are only positive tangential velocities. Of course as 0Kn   all motion in the enclosure vanishes [13]. 

The flow field structure for Case 2 has qualitative similarities with that of Case 1. Again two kinds of vortices  
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Figure 2. Tangential velocity 
yu  along the lateral walls of a square enclosure for 

1 2/ 0.1T T  , 0.9  and various 

values of the Knudsen number (case 1). 

appear along the boundaries depending on the Knudsen number and the temperature ratios (here the temperature 

ratio is defined in terms of the mean temperature of the heated wall). Some quantitative differences however 

exist, mainly in the temperature distributions due to the different boundary conditions. Case 2 configuration is 

close to the set-up of cooling devices in packed MEMS. Therefore, the most important results are regarding the 

heat flux departing from the bottom plate. As the heat flux departing from the bottom plate is given, the 

temperature distribution along the heated wall is part of the solution. In order to investigate the results it is 

convenient to introduce the average temperature of the heated wall as  
/2

/2

W

H H
W

T T x dx


   . In Fig. 3, the 

temperature ratio /C HT T is given in terms of the applied heat flux for various values of the reference Knudsen 

number. A very interesting result is that for all values of the Knudsen number simulated, covering the slip, 

transition and free molecular regimes, for any given value of 
Hq , two values of the temperature ratio /C HT T  may 

be obtained. More specifically as /C HT T  is initially increased 
Hq  is also increased, until a maximum value 

around / 0.3C HT T   and then if we further increase the temperature ratio 
Hq  is decreased. So the heat flux has a 

non-monotonous behavior with respect to the temperature ratio. This is in agreement with previously reported 

results and a detailed explanation of this phenomenon is provided in [9]. 

 

 
 

 

 

 

 

 

Figure 3. Temperature ratio /C HT T  in terms of 

the dimensionless heat flux Hq  for various 

values of the reference Knudsen number. 

Figure 4. Departing heat flux 
2/HQ W m    

from the bottom plate in terms of reference 

pressure for various temperature ratios. 
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Some indicative dimensional results are presented in Fig. 4, where the dimensional heat flux given at the 

bottom plate 2/HQ W m    is plotted in terms of the reference pressure  0P Pa  for various values of the 

temperature ratio /C HT T . The results are for a square cavity of side 50W m  and the average temperature of 

the heated wall is 310HT K . The working gas is Argon  39.95 /m Kg kmol . We see that for any given 

temperature ratio as the pressure is increased the heat flux is also increased. Moreover at any given pressure, as 

the temperature difference increases the heat flux also increases until it reaches a maximum value for  

/ 0.3C HT T  , and then it decreases if the temperature difference is increased. This result is important in the 

stability and efficiency optimization of cooling devices operating under vacuum conditions 

5 CONCLUSIONS 

The thermally driven flow of a monatomic rarefied gas confined in a 2D enclosure far from local equilibrium 

has been investigated using both deterministic and stochastic modeling. Very good agreement between the two 

approaches is taken. Two boundary condition scenarios were investigated, the first having mainly scientific 

importance, while the second is of more of practical importance as it corresponds to cooling applications. A non-

expected flow near the lateral walls contrary to the expected thermal creep flow is observed. A non-monotonic 

behavior of the heat flux departing from the bottom plate has been observed with the heat flux attaining a 

maximum value at an intermediate temperature ratio. This result is important for the optimization of cooling 

devices operating under rarefied conditions. It is believed that this work is of both scientific and technological 

interest. 
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