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Abstract. Ferrocement is a type of reinforced concrete widely used in the construction of thin shell elements. 
This study investigates a simulation method based on composite layered shells for the nonlinear analysis of 
ferrocement elements under in-plane shear. A tube torsion test is simulated and analyzed with MSC MARC and 
its results are compared to an alternate calculation method, the Simplified Model for Combined Stress 
resultants (SMCS) as well as with experimental data. The simulation method is found to produce accurate 
results for fully under-reinforced elements with a range of strong to weak reinforcement ratios less than 2. 
 
1 INTRODUCTION 

Ferrocement, a form of reinforced concrete that uses as reinforcement multiple layers of closely spaced steel 
meshes of small diameter, is a material widely used in the construction of thin shell structures. In many cases, 
the ferrocement structural elements mostly act as membrane elements not only under axial loading but also 
under in-plane shear. Over the years theories and methods were developed for calculating the ultimate shear 
strength of reinforced concrete (R/C) panels and predicting their behavior under pure shear or combined axial 
and shear stresses. For many years the design of such elements was governed by the assumption that the 
inclination of the cracks with respect to the loading vector was equal to 45 degrees. Such an assumption, 
although correct in cases where the panel is subjected to pure shear and is equally reinforced in both directions, 
is very conservative and in general underestimates the load carrying capacity of the elements.  

The Compression Field Theory (CFT) [1] [2], introduced the idea of the correlation of the inclination angle 
of the crack with respect to the loading axis to the strain conditions of the element. Then, Vecchio and Collins 
[3], based on an experimental program also utilized in this study, developed the Modified Compression Field 
Theory (MCFT) introducing the contribution of concrete by its tensile stress in the ultimate shear resistance of 
the element. Due to the complexity of its equation, MCFT was found by engineers to be a very cumbersome 
method to be used in hand calculations, thus, simplified methods were developed. The simplified MCFT 
(SMCFT) by Bentz et al. [4] simplifies the calculations of MCFT based on various assumptions, one of which is 
the lack of axial stress in the transverse direction. Thus, SMCFT is limited to the cases of shear under uniaxial 
loading.  

A very effective calculation method was proposed by Rahal [5] termed SMCS (Simplified Model for 
Combined Stress Resultants). The later method correlates the ultimate shear strength and the mode of failure to 
the reinforcement indices and ultimate concrete compressive strength. Combined with the calculation method 
proposed by the same author [6] regarding the determination of the post-cracking shear modulus of the 
reinforced concrete panel, SMCS can effectively describe the behavior of R/C membrane elements under in 
plane shear.   

Another effective approach for predicting the behavior of shear panels is the application of numerical 
procedures such as the Finite Element Method. This approach can either be applied in the form of linear 
analysis, by using effective properties for the membrane elements, or in the form of nonlinear analysis, by 
incorporating in the models nonlinear material stress-strain relationships. For the nonlinear analysis of R/C 
elements, simulation methods and guidelines exist for decades. Bergan and Holand [7], for example, mention 
two simulation techniques, one based on the use of shell elements to simulate the cement mortar matrix 
(degenerating to plain stress elements in case of 2D problems) and beam elements to simulate the reinforcing 
rods and mesh  and another one based on the use of composite layered shell elements. Between these two 
methods, the most effective one seems to be the later, as the first one not only introduces mesh limitations, on 
the grounds that the shell and beam elements need to be combined at common nodal points, but also makes it 
difficult to simulate the position of the rods along the thickness of the element.  

In the present paper, the simulation method based on composite layered shells for the nonlinear analysis of 
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ferrocement elements under in plane pure shear is investigated. A tube torsion test is simulated and analyzed in 
MSC Marc [8] and its results are compared to those calculated by the SMCS and experimental data. The 
findings of this investigation are expected to provide certain guidelines for the simulation of ferrocement 
membrane elements under shear, help determine possible limitations of this simulation technique and can 
constitute the basis for future experimental and numerical research on the design and analysis of ferrocement 
structures. Section 2 provides the basic information needed by the reader regarding the Simplified Model for 
Combined Stress resultants while Section 3 summarizes the past experimental works on the behaviour of R/C 
panels under in-plane shear. The results of these tests are used for the verification of the proposed simulation 
method. Section 4 provides a detailed description regarding the formulation of the numerical simulation models 
used in the present paper. Finally, Section 5 further investigates the composite layered shell simulation method 
by comparing its results to experimental ones, while Section 6 summarizes the findings of the paper and presents 
its conclusions. 

2 FUNDAMENTALS OF THE SMCS 

As mentioned in the introduction, SMCS [5] is a simplified method for the calculation of the shear capacity 
as well as for the prediction of the mode of failure of membrane elements under shear and biaxial normal 
stresses. The method is based on the compatibility of strains, equilibrium of forces and experimental data, while 
the existence of normal stresses is taken into account by the concept of superposition of reinforcement (one 
portion resisting normal loads and one resisting shear ones). SMCS neglects the contribution of the 
reinforcements beyond a “balanced” limit  derived from experimental results. Based on this limit, three types 
of elements and modes of failures exist. Fully under-reinforced (UR) elements in which the ultimate shear 
strength is attained when both the longitudinal and transverse reinforcement yield, partially under-reinforced 
ones (PUR) in which at failure the reinforcement in only one direction has yielded and fully over-reinforced 
(OR) in which failure occurs due to crushing of the concrete matrix before yielding of steel in either direction.  

According to Rahal, the nominal shear strength of the elements is calculated as follows: 
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Equations (1) to (3) demonstrate the simplicity of the method. The ultimate shear strength n  of a membrane 

element can be easily calculated by specifying the compressive strength of the concrete '
cf , and calculating the 

reinforcement indices x  and y  by specifying the reinforcement ratio i , the reinforcement yield stress ,y if  

and the normal stress i  in each direction. For the classification of the element and the prediction of the failure 

mode only the two checks of Eq. (2a) and (2b) are needed. The comparison of the SMCS to experimental results 
(available in [5]) demonstrated the very good performance of the method, which is similar to the other widely 
used ones (MCFT and SMCFT). In order to better describe the behavior of membrane elements under shear, 
Rahal [6] correlated the in plane shear modulus of the cracked section crG  to the same parameters, by the use of 

equation: 

'
135.4cr
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f
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The reinforcing indices are again limited by  . Equation (4) applies to all three types of elements (UR, 
PUR, OR) but is limited to the cases of pure shear ( 0x y   ) and evenly distributed reinforcement. The 

proposed equation was compared by Rahal [6] to available experimental results for pure shear and was found to 
capture the overall behavior of the membrane elements very well. In Eq. (4) crG  is the best straight line fit 

produced by regression analysis of the experimental data points between cracking and first yielding. Points 
between the cracking shear stress cr  and 1.2 cr  are considered to be in the transition zone and are excluded. 

Although SMCS was developed for conventional reinforced concrete elements, due to the lack of a more 
ferrocement-specific method, it is used here as a reference solution for the comparison of the results obtained by 



Apostolos Koukouselis and Euripidis Mistakidis. 

the numerical analyses demonstrated later in this study. 

3 SYNOPSIS OF PAST EXPERIMENTAL WORK USED IN THIS PAPER 

For the validation of the methods and theories referenced in the introductory part of the paper, a variety of 
experimental data has been used. As nowadays high performance cementitious materials are used in ferrocement 
structures, this study focuses on cases where the concrete matrix is of high compressive strength (higher than 
40MPa). Moreover, this study is limited to fully under-reinforced elements under pure shear. Again, although 
the experiments were conducted on conventionally reinforced elements, due to lack of more relevant 
experimental results, they are used as reference for the needs of this investigation. Table 1 summarizes the 
experimental results used in this study.  

Pang and Hsu [9] tested thirteen square 1.4x0.178 m concrete panels in a ±45⁰ tension-compression test. 
Series A specimens were equally reinforced in both directions while those of series B were unequally reinforced. 
In both groups the loading in the two directions (tension and compression) was equal. As the authors mention, 
the scope of series A tests was to study the effect of the reinforcement ratio while that of series B was to 
investigate the effect of the ratio of transverse to longitudinal reinforcement. From their experimental program, 
specimens A2, A3 and B1 to B3 are used for comparison reasons in Section 5.  

Vecchio et al. [10] in the University of Toronto tested 12 panels in pure shear and shear with biaxial stresses. 
The specimens were 0.89x0.89x0.07 m and the loading was monotonic and proportional. Two series of 
experiments were carried out named “PHS” and “PA” with the “PHS” being more heavily reinforced. From the 
six specimens tested in pure shear, only PA1 and PA2 are used here as, according to Eq. (2a), the other four are 
partially under-reinforced and thus have a failure mode outside the limitations of this investigation.  

The HB, VA and VB series 1.4x1.4x0.178 m panels tested in the University of Houston were used to 
validate and generalize the constitutive laws for the softened truss models proposed by Hsu and Zhang [11], 
[12]. As with the previous experimental programs, cases of fully under reinforced specimens were chosen for 
the comparison with the composite layered shell simulation method. Specimens VA1, VA2 and VA3 present 
equal reinforcing indices in both directions, while HB3, HB4, VB1, VB2 and VB4 are more heavily reinforced 
along the x direction. 

 

Experiment Specimen '
cf  x  y    

Pang and Hsu (1995) 
1.4x1.4x0.178m 

A2 41.3 0.134 0.134 0.287 

A3 41.7 0.192 0.192 0.287 

B1 45.3 0.123 0.059 0.283 

B2 44.1 0.181 0.126 0.284 

B3 44.9 0.178 0.059 0.283 

Vecchio et al. (1994) 
0.89x0.89x0.07m 

PA1 49.9 0.173 0.086 0.278 

PA2 43 0.202 0.100 0.286 
Hsu and Zhang 

(1997) 
1.4x1.4x0.178m 

HB3 66.8 0.120 0.040 0.259 

HB4 62.9 0.223 0.042 0.263 

Hsu and Zhang 
(1998) 

1.4x1.4x0.178m 

VA1 95.1 0.056 0.056 0.228 

VA2 98.2 0.100 0.100 0.224 

VA3 94.6 0.173 0.173 0.228 

VB1 98.2 0.100 0.054 0.224 

VB2 97.6 0.167 0.055 0.225 

VB4 96.9 0.085 0.028 0.226 
Table 1. Summary of the experiments 

4 NUMERICAL SIMULATION BY THE USE OF COMPOSITE LAYERED SHELLS 

Although hand calculations are always useful for preliminary design as well as for validation, nowadays 
most of the analysis and design process is computer assisted, as engineers are called to analyze and design more 
and more complex structures. As far as ferrocement structures are concerned, which are usually free form shell 
structures, they are in most cases modeled by the use of shell elements rather than solid ones so that the 
computational cost is reduced. Thus, two methods seem appropriate for the simulation of the composite material. 
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The first one uses shell elements to simulate the concrete matrix and beam elements for the reinforcing rods 
(mixed elements model). In the second one composite layered shells are used for the simulation of the entire 
cross section. As mentioned in the Introduction, the first method introduces mesh limitations as the shell and 
beam elements need to have common nodes. Moreover, the position of the reinforcement along the thickness of 
the element is more difficult to be simulated, as beam offsets have to be used. Thus, the simulation by the use of 
composite layered shell has an obvious advantage as far as the simulation of the bending behavior is concerned. 
This study investigates the later simulation technique in the case of pure shear and compares its results to 
analytical and experimental ones. 

A tube torsion test is simulated in MSC Marc [8]. As Chaterjee S. et al. [13] mention, torsion tests on thin 
tubes have been suggested by many investigators as an effective method for determining the in plane shear 
behavior of composite materials.  Thus, thin ferrocement tubes are modeled and analyzed with height to 
diameter ratio 2.62 (greater than 2 is generally recommended). The thickness to diameter ratio t/d is 0.018 in all 
cases investigated, (smaller than 0.02) so that the variation of the shear stress through the thickness is small 
enough, as suggested by the report of Chaterjee S. et al. [13], while the perimeter to thickness ratio is 174. The 
models consist only of thin shell elements (MARC element type 139) with a mesh division of 60x50 elements 
(along the circumference and height respectively). The models are solved using a Full Newton-Raphson iterative 
procedure, small strain theory and the convergence testing is based on the residual forces. Because at the outer 
edges of the specimens stress concentrations and numerical convergence issues might arise, the last series of 
finite elements is considered to be elastic. Even in real experiments, the regions near the grips of the testing 
machine are usually thicker so that the load is introduced evenly and premature failure is avoided. Only the 
circumferential displacements are restrained while the radial displacements as well as the rotations of the edges 
are considered free so that no stresses, other than that of pure shear, appear. 

As aforementioned, the composite layered shell model simulates the reinforced section by the use of 
appropriately arranged layers. Isotropic cement layers are used for the matrix while the reinforcing rods are 
simulated by equivalent layers of steel. The material of the steel layers, although based on the properties of the 
reinforcing steel, has to be orthotropic in order for the layers to have stiffness only in the direction of the 
reinforcing rods. The Poisson’s ratio 12n  is also considered to be equal to zero as deformation in one direction 

does not cause deformation in the other one. Depending on whether the steel layer represents reinforcement 
parallel to the local x or the local y axis, it is orientated with an angle of 0 or 90 degrees with respect to the 
vertical axis respectively. Figure 1 shows a typical composite layered shell used in the analyses.  

The constitutive law for both materials was considered bilinear elastic perfectly plastic. The reinforcement 
steel is assumed to yield at a stress of 500 MPa and has an elasticity modulus along the main direction of 
200GPa. For concrete, a modified version of the Buyukozturk criterion is used, which takes into account the 
onset of cracking. More specifically, the yield surface is based on equation (4) in Buyukozturk [14], while a 
tension cut-off criterion is also introduced leading to the surface shown in Figure 2.  

 

Figure 1. Typical Composite layered shell 
element. 

Figure 2.  Buyukozturk criterion with cracking [14] 

The compressive strength '
cf  was equal to 60 MPa while the tensile strength was equal to 3.1 MPa. The 

elastic modulus was assumed to be equal to 39 GPa and the Poisson’s ratio equal to 0.2 Cracking is handled 
through the smeared crack approach. This approach is very convenient as no remeshing is required and in the 
case of cracks of small width and smeared throughout the element, such as ferrocement ones, it is known to 
work well. The orientation of the crack is not needed to be known “a priori” as the model orientates the crack to 
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be parallel to the principal tensile strain while upon cracking the isotropic behavior is converted to orthotropic. 
The stiffness with respect to the principal tensile stress is reduced by a factor which is a function of the cracking 
strain ( cr ). The inclination angle   of the cracks is fixed upon cracking and is not recalculated in each 

increment, while a second crack can only be formed perpendicularly to the first one. 
To fully describe the post cracked behavior of concrete, the post cracking shear modulus needs to be 

determined. A common assumption is to assume that cracked concrete loses its capability to carry shear stresses 
upon cracking and thus the shear modulus drops to zero. However, such an assumption is far from reality and 
involves a sudden transition from a linear isotropic material to an orthotropic one with zero shear stiffness, 
causing numerical convergence issues and limiting the ability of the model for stress redistribution [15]. In 
reality, cracked concrete can still transfer shear stresses through aggregate interlock and dowel effect. The post 
cracked shear modulus of concrete is usually considered to be equal to a percentage of the elastic one ,el cG , 

where   is the shear retention factor, ranging from 1 to 0. As Hu and Schnobrich [16] mention, analytical 

results demonstrated that the value chosen for   is not critical but a value greater than zero is required for 

numerical instabilities to be avoided. Figure 3 demonstrates a comparison of four analyses with different shear 
retention factors of the specimen PA1 which has a ratio of reinforcement indices x y   equal to 2.01. It can be 

observed that the different shear retention factors cause a difference in the behavior of the model after the 
yielding of the horizontal reinforcement but the ultimate shear strength is the same for all the considered shear 
retention values. When the reinforcement indices are equal, the effect of the shear retention factor is 
insignificant, as both directions yield simultaneously. Note that the use of the shear retention factor may cause 
the tension cut-off criterion to be violated. 

 
 

Figure 3. Effect of shear retention factor on the behavior of the model. 
 

5 APPLICATION OF THE COMPOSITE LAYERED SHELL METHOD FOR THE SIMULATION 
OF EXISTING EXPERIMENTAL RESULTS 

This section investigates the performance of the model, by comparing its results for various reinforcement 
ratios per direction versus experimental ones. Moreover, the numerically obtained results are compared with 
those calculated by the simplified formulas of SMCS. It should be noted that the actual tested specimens were 
squares of various dimensions. For the needs of the comparison presented in this section, all experiments were 
converted to equivalent tube torsion tests ( /p t =300, /h d = 2.6). As input for the analyses, only the ultimate 

compressive concrete strength '
cf  and the reinforcement indices x  and y  were used. The ultimate tensile 

strength ctmf  and concrete yielding strain 3c  were calculated according to Table 3.1 of EN1992 [17] while cE  

was based on Figure 3.4 of EN1992 ( 3c cf  ). The softening modulus for cracking was considered to be 10% of 

cE . The yield stress of the reinforcing steel was considered to be 500 MPa regardless of the actual used steel for 

the experiments. Thus, for given reinforcement indices x  and y  and ultimate compressive strength '
cf , the 
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reinforcement ratios of the equivalent models were determined as i i c yf f  . The thickness of the steel layer 

was calculated as i i tott t , where tott  is the total thickness of the composite shell . Regarding shear retention, 

two values of   were used, namely 0.15 and 0.25, in order to study the effect of this factor on the analysis 

results. 
The above simulation procedure was followed so that all experiments are studied within a unified context 

and, as in the SMCS, the input is limited to easy to access data to the designer ( '
cf , x  and y ). Hence, these 

analyses are not to be seen only as a virtual reproduction of the experiments but also as a demonstration of a 
numerical analysis procedure, based on the basic properties of the materials and guidelines widely followed for 
the design of R/C structures. 

Tables 2 and 3 and Figures 4 to 7 present the comparison of the model results to the experimental ones and 
to the SMCS calculations. Table 2 compares the shear strength calculated by the model to the ones of the 
corresponding experiment and the prediction of the SMCS. When the reinforcement indices in the two directions 
are equal, the numerical (model) and analytical (SMCS) results are in very good agreement (Specimens A2, A3 
and VA1 to VA3). The agreement of the numerical analyses to the experimental results and analytical solution 
continues for a ratio of reinforcements x y   up to 2. In these cases, the differences that result are less than 

10% (specimens PA1, PA2, B1, B2 and VB1). When the reinforcement ratio is near to 3, the differences of the 
results range from 8% to 18% while for a ratio of 5 (HB4) the difference between experiment and model reaches 
52%. The difference between the analytical solution and the analysis is of the order of 33%.  

In more detail, comparing the numerical analyses to the results calculated by SMCS, it is obvious that as the 
ratio of longitudinal to transverse reinforcement increases, so does the error between the SMCS and the model. 
The source of this error is the violation of the cracking criterion due to the used shear retention factors. The 
more the difference between the reinforcement ratios, the more intense crack reorientation is needed in the 
model for the maximum shear stress to be attained. As crack reorientation is achieved through the development 
of concrete shear stresses along the crack, that means that in the models of high  x y  ratios the concrete shear 

stresses are higher and so is the violation of the cracking criterion. The produced tensile forces cause the 
increase of the ultimate shear stress. 

As far as the post-cracking shear modulus is concerned, the numerical models are generally stiffer than the 
analytical solution and the experiments. As in SMCS, the post cracking shear modulus is obtained by a 
regression analysis as the best straight line fit for the data between 1.2 cr  and first yield. The slope of this 

branch, as observed in Figure 3, is almost independent of the selected shear retention factor and, thus, the post 
cracking shear modulus crG  of the numerical models is also independent of the used shear retention values. The 

average difference of the models to the SMCS is 31%. Compared to the experiments, the analyses present a 

crG which is about 29% higher (Table 3). A closer look at the overall response of the specimens provided by 

Figures 4 to 7, leads to the conclusion that apart from the cases where x y   is greater than 2, the response of 

the numerical models is not much different from the experimental ones. The difference in the post cracking 
modulus is caused by the fact that defining crG  as the slope of the post-cracking and pre-yielding branch, may be 

absolutely correct in the cases in which x y   = 1, however, when x y   there exists an additional branch 

(between the y-reinforcement and x-reinforcement yielding) which can be very significant. The numerical 
models, in contrast to SMCS, reproduce the change of shear stiffness after the yielding of the weak direction and 
thus, describe in a better way the overall behavior of elements with a reinforcement ratio between 1 and 2.  

This branch between yields is highly dependent on the assumptions regarding shear retention (notice that two 
values regarding   were investigated, 0.15 and 0.25). The different shear retention factor causes no change in 

the analysis results for the specimens with reinforcement ratio of 1 (A2 to VA3)  but affects the behavior of 
specimens with a ratio between 1 and 2. The cases in which  x y  is greater than 2, although presented in the 

detailed discussion later in this section, are of less importance at this stage of the investigation, on the grounds 
that their ultimate shear strength is overestimated and thus the range of application of the presented method has 
to be narrowed to elements with reinforcement ratios up to 2.  

Figure 4 compares the stress-strain curves obtained for the Series A experiments by Pang and Hsu [9] to the 
numerical ones. The three stages mentioned by the authors (elastic uncracked, post-cracking elastic and plastic 
stage after yielding) are also visible in the numerically obtained curve. The authors also noted that both 
longitudinal and transverse reinforcement had yielded and the specimens ultimately failed due to crushing of the 
concrete (descending branch). Based on this fact, one may come to the conclusion that the analyses fail to 
predict the correct failure mode. However, Pang and Hsu also noted that after yielding, the increase of shear 
deformation was rapid. In addition, the value of the yielding and the maximum shear stress are very close and 
thus the failure mode is similar to that of under-reinforced panels. Rahal [5] also considered the failure to be the 
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result of reinforcement yielding. The numerical analyses seem to be in accordance to the experiments, both in 
terms of post-cracking shear modulus and ultimate shear strength. 

 
 '

n cf  

Specimen x y   Exp. SMCS Model Exp/ SMCS Exp/Mod. SMCS /Mod. 

A2 1.00 0.134 0.134 0.134 1.000 0.997 0.997 

A3 1.00 0.192 0.192 0.192 1.000 0.999 0.999 

VA1 1.00 0.068 0.056 0.056 1.214 1.214 1.000 

VA2 1.00 0.104 0.100 0.100 1.040 1.037 0.997 

VA3 1.00 0.167 0.173 0.173 0.965 0.965 1.000 

PA1 2.01 0.127 0.122 0.129 1.041 0.981 0.942 

PA2 2.02 0.145 0.142 0.150 1.020 0.964 0.945 

B1 2.08 0.092 0.085 0.092 1.080 1.002 0.927 

B2 1.40 0.146 0.151 0.154 0.967 0.951 0.984 

B3 3.02 0.102 0.102 0.119 0.995 0.858 0.862 

VB1 1.85 0.080 0.073 0.077 1.089 1.036 0.952 

VB2 3.04 0.098 0.096 0.110 1.023 0.890 0.870 

VB4 3.04 0.053 0.049 0.057 1.086 0.926 0.852 

HB3 3.00 0.073 0.069 0.080 1.054 0.914 0.867 

HB4 5.31 0.085 0.097 0.129 0.878 0.658 0.750 

Table 2. Comparison of '
n cf calculated by the numerical models versus experimental results and the 

SMCS. 
 

 crG  

Specimen x y   Exp. SMCS Model Exp/ SMCS Exp/Mod. SMCS/Mod. 

A2 1.00 0.89 0.75 0.93 1.19 0.96 0.81 

A3 1.00 1.25 1.08 1.25 1.16 1.00 0.86 

VA1 1.00 0.69 0.72 0.95 0.96 0.73 0.76 

VA2 1.00 1.37 1.33 1.63 1.03 0.84 0.81 

VA3 1.00 2.14 2.21 2.41 0.97 0.89 0.92 

PA1 2.01 0.69 0.82 1.05 0.84 0.66 0.78 

PA2 2.02 0.75 0.83 1.03 0.91 0.73 0.80 

B1 2.08 0.46 0.52 0.71 0.88 0.65 0.73 

B2 1.40 0.95 0.90 1.10 1.06 0.86 0.82 

B3 3.02 0.58 0.62 0.85 0.93 0.68 0.73 

VB1 1.85 1.06 0.97 1.28 1.09 0.83 0.76 

VB2 3.04 1.27 1.26 1.62 1.01 0.78 0.78 

VB4 3.04 0.53 0.64 0.93 0.83 0.57 0.69 

HB3 3.00 0.72 0.62 0.89 1.15 0.81 0.70 

HB4 5.31 0.86 0.82 1.17 1.05 0.74 0.71 
Table 3. Comparison of crG  calculated by the numerical models versus experimental results and the  SMCS. 

 
PA series specimens by Vecchio et al. [10], shown in Figure 5, presented sliding shear failure of concrete 

immediately after yielding of the reinforcement in the weak direction, while localized yielding occurred in the 
strong one. Despite the localized failure of the weak direction, the failure mode of these two specimens can be 
categorized to that of under reinforced panels based on their response, as there is a distinct branch between 
yields in the    curve. Rahal [5] also considered the failure mode to be in this category. Vecchio et al. also 



Apostolos Koukouselis and Euripidis Mistakidis. 

mention that the crack reorientation from the initial 45⁰ was not noticeable. Moreover, the slope of the branch 
between yields in the numerical model with a shear retention factor of 0.25 is not in accordance to the one 
produced by the experiment. As the shear retention factor is responsible for crack reorientation and for the slope 
of the aforementioned branch, these facts lead to the conclusion that a shear retention factor of 0.25 
overestimates the stiffness of the specimens. A shear retention factor of 0.15 leads to numerical results that fit 
better with the experimental ones. 
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Figure 4. Experimental and numerical stress-strain curves for series A. 
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Figure 5. Experimental and model stress-strain curves for PA series. 
 
In the comparison of the    curves yielded by specimens B1 to B3 tested by Pang and Hsu [9] to the 

numerically obtained curves (Figures 6 and 7), the first remark is the overestimation regarding the value of the 
shear retention factor in both cases (   = 0.25 and   = 0.15). Pang and Hsu mention that the heavily reinforced 

direction also yielded, which is also the case in the numerical models, thus the failure modes are in agreement. 
The yielding points of the two directions are overestimated by the numerical analyses and so is the ultimate 
shear strength. However, when the shear retention factor is equal to 0.15, the branch between yields produced by 
the numerical model is almost parallel to the corresponding branch of the experiment, although it starts at a 
higher shear stress. Thus, it seems that a value of   equal to 0.15 produces better results. The above mentioned 

differences in yielding points and ultimate shear strength become more obvious in the case of B3, in which the 
ratio of the reinforcement indices is higher. As aforementioned, these differences are caused by the violation of 
the cracking criterion. In the authors’ opinion, the differences in cases B1 and B2 are within an acceptable range. 
In the case of B3, the differences, both in terms of ultimate shear strength and in terms of post cracking 
behavior, are not acceptable, but the SMCS also cannot capture the behavior of the specimen accurately. 
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Finally, in the case of the    curve of specimen HB3, shown in Figure 7, again the yielding of the 

reinforcements comes later in the numerical model, due to the concrete tensile stresses that arise as a result of the 
violation of the cracking criterion. A value 0   is necessary to take into consideration the contribution of 

concrete to the redistribution of the stresses and the complete neglect of shear retention would result in 
significant underestimation of the ultimate shear strength. However, the capacity was overestimated and the 
exact behavior of the model was not captured efficiently. The SMCS seems to reproduce the behavior of the 
specimen adequately. 

A difference between the behavior of the numerical models and that of the majority of the specimens is 
located in the cracking region. All numerical models present a rapid transition between uncracked and cracked 
states, while in the experiments the transition is smoother and appears as a slightly less stiff branch between the 
elastic region and the region prior to first yield. This phenomenon is somehow inevitable, as the numerical 
model is based on the smeared crack theory and this leads to a rather even distribution of the stresses throughout 
the height of the tube and to a    diagram that concentrates all damage effects in a small region. However, in 

reality, due to the slight differences in the stress state and the material properties throughout the specimen, the 
onset of cracking occurs more progressively. 
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Figure 6. Experimental and model stress-strain curves for B1 and B2. 
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Figure 7. Experimental and model stress-strain curves for B3 and HB3 tests. 

6 CONCLUSIONS 

This study demonstrated a modeling technique for the analysis of ferrocement elements under in-plane shear 
which utilizes composite layered shell elements for the simultaneous simulation of the entire reinforced cross 
section. The simulation by composite shell elements offers a considerable flexibility in the carving of the actual 
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F.E. model, as there is no need for common nodes between elements representing the matrix and the ones used 
for the simulation the steel rods. The composite shell simulation technique cannot capture the slightly different 
behavior of elements with same reinforcement indices but different reinforcing patterns. However, as 
ferrocement elements are reinforced by meshes of closely spaced rods of small diameter, the resulting material is 
almost homogeneous and thus the mesh spacing does not play a significant role. 

The comparison of the composite layered shell modeling method to existing experimental results and the 
Simplified Model for Combined Stress resultants (SMCS) demonstrated a very good agreement in the cases of 
reinforcement index ratios x y   up to 2. This range is similar to the one of the rotating-angle softened-truss 

model [11]. As far as shear retention is concerned, in the case of equal reinforcement indices the value assumed 
for    does not affect the results, as expected. However, as the x y   ratios become higher, shear retention 

causes the cracking criterion to be violated and the shear strength to be overestimated. This fact leads to the 
limitation of the presented simulation method to the aforementioned limit of 2x y   . However, the 

reinforcement of ferrocement elements in most, if not all, cases comes in the form of square meshes and thus the  

x y   ratio is 1 or very close to unity. Hence, the range of application of the investigated simulation method 

can be considered to cover the majority of ferrocement structures and therefore can be applied with the 
confidence that the in-plane shear behavior is well approximated, given that the nonlinear modeling of the 
materials is included and an appropriate shear retention factor between 0.15 and 0.25 is taken into account. 
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