
8th GRACM International Congress on Computational Mechanics 

Volos, 12 July – 15 July 2015 

 

1 

 

 

DYNAMIC ANALYSIS OF CYLINDRICAL SHELL PANELS. A MAEM SOLUTION 

Aristophanes J. Yiotis and John T. Katsikadelis 

School of Civil Engineering, National Technical University of Athens 

e-mail: fgiotis@otenet.gr 

e-mail: jkats@central.ntua.gr; web page: http://users.ntua.gr/jkats 

 

Keywords: Meshless Analog Equation Method (MAEM), Dynamic Analysis, Radial Basis Functions (RBFs), 

partial differential equations, cylindrical shells. 

Abstract. The MAEM (Meshless Analog Equation Method), a purely mesh-free method, is applied to the 

dynamic analysis of cylindrical shell panels. The method is based on the principle of the analog equation, which 

converts the three governing partial differential equations in terms of displacements into three uncoupled 

substitute equations, two second order equations and one fourth order equation, under fictitious sources. The 

fictitious sources are represented by series of RBFs (Radial Basis Functions) of MQ (multiquadric) type and the 

substitute equations are integrated. This integration allows the representation of the sought solution by new 

RBFs, which approximate accurately not only the displacements but also their derivatives involved in the 

governing equations. Then, inserting the approximate solution in the original differential equations and the 

associated boundary and initial conditions and collocating at a predefined set of mesh-free nodal points, a 

system of ordinary differential equations results, the solution of which gives the unknown coefficients and then 

the displacements. The method is illustrated by analyzing several shell panels. The studied examples 

demonstrate the efficiency and the accuracy of the presented method. 

1 INTRODUCTION 

 The practical importance of thin shells in structural, mechanical and aerospace engineering applications has 

made vibration analysis essential in the planning process in order to achieve a better and more reliable design. 

Extensive research has been carried out by numerous researchers on this particular research topic. 

 For the dynamic analysis of linear elastic thin shells characterized by complex geometry, loading and 

boundary conditions, numerical methods, such as the FDM and especially the FEM have been used [1]. Both of 

these methods, in spite of some shortcomings, have been successfully employed for the solution of a variety of 

static and dynamic shell problems. The BEM has been proven an efficient alternative to the domain type 

methods, especially for thin elastic shallow shells [2], or combined with the AEM for cylindrical shells [3]. 

 However, these methods require the design of meshes which is an extremely tedious and time-consuming 

process. In light of decreasing computer costs and increasing manpower costs, meshless methods (MM) present 

an attractive alternative to FEM or BEM, especial for shell structures that are very complex both in the field 

variable expression and the geometry representation. Another disadvantage of these methods is that their 

convergence rate is of second order [4]. 

 Comprehensive descriptions of different MM are presented in [5-6] and in a review paper [7]. 

 The mesh-free MQ-RBFs (multiquadric radial basis functions) method presented in [8] has attracted the 

interest of the investigators, because it enjoys exponential convergence and is very simple to implement. 

Recently using this method, papers dealing with the static analysis and vibration of composite shells [9] and the 

static analysis of cross-ply laminated shells [10] have appeared. The major drawback of this method is the ill-

conditioning of the coefficient matrix. Besides, the inability to accurately approximate the derivatives of the 

sought solution renders the method inappropriate for a strong formulation of the problem. These drawbacks, 

inherent in the standard MQ-RBF method, are overcome by the new RBF method presented recently by 

Katsikadelis [11-15]. Another important issue is the implementation of multiple boundary conditions for 

equations of order higher than two. In this investigation the δ-technique is employed [16] for the fourth order 

equation. The problem of multiple boundary conditions does not appear when the shell is modeled as a three-

dimensional body [17]. 

 Following two papers presented recently for the static analysis [18] and buckling of cylindrical shells [19] 

,the method is now extended to the dynamic problem of cylindrical shell panels as described in Section 3. In 

Section 2, the statement of the problem is presented, while several example problems are worked out in 

Section 4, which illustrate the applicability of the method and demonstrate its efficiency and accuracy. Finally, 

Section 5 includes certain conclusions drawn from this investigation. 

2 STATEMENT OF THE PROBLEM 
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 The Flügge type differential equations are used , which for thin-walled cylindrical shells of uniform thickness 

h , (Fig. 1) made of an isotropic, linearly elastic material are written as [20-21]: 

 

2

2

12

1 1 1
, , , , [ ,

2 2 12
1 , , 1

( ), ] ( )
2

xx ss xs x xxx

xs s
s x

h
u u v w w

R R
w u

R c u q hu
R EhR

 (1a) 

 

2

2

2

12 2

3(1 )1 1 1
, , , ( ), [ ,

2 2 12 2

(3 ) , 1
, , ( , )] ( )

2

ss xx xs s xx

s
xxs s ss s

w h
v v u v

R R
w R

Rw R w v c v q hv
EhR R

 (1b) 

 

4

2 2 4

2

12 4 2 3

, 1 1 , 3
( ), , ( ), ( ),

2 2

12(1 ), , 12 1
( ), ( , , ) ( )

ss xs
ss xxx s xxs

s s
ss s x z

w w w u v
w u

R R RR R R

R R w
v v v u c w q hw

R RR R h Eh

 (1c) 

where 
4 4 4

4

4 2 2 4

2

x x s s
 is the biharmonic operator. The parametric lines x ( .)s const  and s

( .)x const  are assumed to be lines of curvature: x  measured along the length axis of the shell and s  is the 

length of the curve .x const , while z  is measured along the normal to the middle surface of the shell (Fig. 1). 

Since a cylindrical surface can be mapped isometrically on a plane, the orthogonal curvilinear coordinates x and 

s  may be viewed as orthogonal plane coordinates. The functions ( , )u x s  ( , )v x s  and ( , )w x s  represent the axial, 

circumferential and normal displacements; ( )R R s  is the variable radius of curvature of the cross-section of 

the shell, h  its thickness,  the mass density per unit volume of the material of the shell and 
1
c  its damping. 
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Figure 1: Cylindrical shell. 

Moreover, Eqs (1) must satisfy the following boundary conditions [21]: 

On a curved edge ( 0x  or x l ) 

 u u  or x xN N  (2a) 

 v v  or xs xsT T  (2b) 

 w w  or x xV V  (2c) 

 x x   or   x xM M  ,     ( )x
w

x
 (2d) 
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On a straight edge ( 0s  or s a ) 

 u u  or sx sxT T  (2e) 

 v v  or s sN N  (2f) 

 w w   or s sV V  (2g) 

 s s   or s sM M ,    ( )s
v w

R s
 (2h) 

the over bar designates a prescribed quantity. Moreover, the following corner conditions must be satisfied [22] 

 w w  or ( )xs sx k kM M F ,     1,2,3,4k   (2i) 

Furthermore the initial conditions are:  

3( ,0) ( )w gx x ,         3( ,0) ( )w hx x  (3a) 

1( ,0) ( )u gx x ,         1( ,0) ( )u hx x  (3b) 

2( ,0) ( )v gx x ,         2( ,0) ( )v hx x  (3c) 

where ( )ig x , ( )ih x , ( , )x sx  ( 1,2,3)i  are specified functions. 

 The stress resultants xN , sN , xsN , sxN , xM , sM , xsM , sxM , xQ , sQ , the effective tangential membrane 

and transverse shear forces at the edges 0,x l  xsT  and xV  and the effective tangential membrane and 

transverse shear force at edges 0,s a  sxT  and sV  are expressed in terms of the displacements as in [18]. 

3 THE MAEM SOLUTION 

 Let ,u v  and w  be the sought solution. Since Eqs (1) are of the second order with respect to ,u v  and of the 

fourth order with respect to w , the analog equations that are convenient to use are [23] 

 2
1( , )u b tx                  2

2( , )v b tx                      4
3( , )w b tx  (4a,b,c) 

where ( , )i ib b tx  ( 1,2,3)i  are unknown fictitious sources. These fictitious sources depend on time, which is 

regarded as a parameter. They can be established as follows. 
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Figure 2: Boundary and domain nodal points. 

 Approximating the fictitious sources with MQ-RBFs series, we can write 
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where 2 2
jf r c , jr x x , c  the shape parameter with ,K L  representing the number of collocating 

points inside  and on , respectively (see Fig. 2) and (1)
ja , (2)

ja , (3)
ja  time dependent coefficients to be 

determined. Note that the derivatives of the membrane displacements ,u v  are collocated in K  domain and L  

boundary points, while the derivatives of the normal displacement w  according to the δ-technique [24] are 

collocated in K  domain and 2L  boundary points. 

 Equations (5) can be directly integrated to yield 
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where ˆ ˆˆ ( ), ( ), ( )j j ju r v r w r  are solutions of the equations 

 2ˆ ( )ju f r                   2ˆ ( )jv f r                    4 ˆ ( )jw f r  (7a,b,c) 

 The solution of Eqs (7) can be readily obtained after writing them in polar coordinates. Thus for the second 

order equations we have 

 2 ˆ1
ˆ ( )j

j
dud

u r f r
r dr dr

 (8) 

which after integration gives 
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 Similarly, we have  
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 The regularity condition at 0r  demands 1 2 0G G . The remaining constants 1 2,H H  together with the 

shape parameter c , if not arbitrarily specified, can be determined through an optimization procedure, such that to 

ensure regularity of coefficients matrix (control of the condition number) and minimization of the error. Since it 

has been shown that the coefficient matrix resulting from the new RBFs is always invertible [25], we take in this 

analysis for convenience 1 2 0H H . Thus only the shape parameter c  is involved in the error minimization 

precedure [11]. 

 For the fourth order equation, we can write 

 
4 2 2ˆ ˆ( ) jw w f  (11) 

which yields after integration and removal of the singular terms as well as the terms including the arbitrary 

constants [26] 
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 The spacial and time derivatives of the displacements are obtained by direct differentiation of Eqs. (6): 
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where , ,i k l  stand for ,x s . 

 Collocating Eqs. (1) at the K  nodal points inside  and the four boundary conditions, Eqs. (2), at the L  

boundary nodal points (Fig. 2) and inserting Eqs. (6-13-15) in the resulting expressions using the well known δ-

technique [24] a system of ordinary differential equations of motion is obtained, namely 

 1  Μa C a Ka g  (16) 

where M , 1C and K  are known square matrices having dimension; 3 4K L ; g  is a vector including the 3K  

values of the external load ( , )g tx  and a  is the vector of the 3 4K L  values of the unknown time dependent 

coefficients (1)( )ja t , (2)( )ja t , (3)( )ja t .  

 Eq. (16) is the semi-discretized equation of motion of the cylindrical shell with M , 1C  and K  representing  

generalized mass, damping and stiffness matrices, respectively. It can be solved numerically, using any time step 

integration technique to establish the time dependent unknown coefficients, e.g. [27-28]. The initial conditions of 

Eq. (16) are obtained from Eqs. (6) and (14) on the basis of Eqs. (3) as follows: 

1ˆ 1
(1)

jja (0) u g (x)          1ˆ1
(1)

j 1ja (0) u h (x)  (17a) 

2
2 1ˆ( )

jja (0) v g (x)          2 1
2ˆ1

( )
jja (0) v h (x)  (17b) 

3
3 1ˆ( )

jja (0) w g (x)         3 1
3ˆ( )

jja (0) w h (x)  (17c) 

 Once the coefficients (1)
ja , (2)

ja , (3)
ja  have been computed, the field functions u, v, w  and their derivatives 

can be evaluated using relations (6) and (13-15) respectively. The stress resultants can be found readily [18]. 

3.1 Free vibrations of cylindrical shells 

 In this case ( ) 0t g , 1 0C , the equation of motion (16) takes the form 

 0 Μa Ka  (18) 

and the boundary conditions (2) become homogeneous. By setting  

 
i te a(t) a  (19) 

 Eq. (18) becomes  

 
2   K M a 0  (20) 

which gives the eigenfrequencies i  and the eigenvectors ia 1,2,...,3 4i K L . Subsequently, using  ia a in 

Eqs. (6) we obtain the mode shapes. 

 The accuracy of the approximation (6) depends heavily on c . This was also verified in this case. Thus we 

come across to the problem of choosing a good value for c . Several methods for selecting a good value for c  in 

two dimensional problems have been suggested [18]. For the problem at hand the optimal value of c  is obtained 

by the search method, namely the value of c  which gives the minimum value of the eigenfrequency . It was 

observed that the optimum c  that gives the minimum first eigenvalue differs negligibly from that yielding the 

minimum higher eigenvalues. Therefore the same optimum value of c  can be used to avoid the search method 

for higher eigenvalues.  

4 NUMERICAL EXAMPLES 

 On the basis of the above analysis a Fortran program has been written. The expressions of the derivatives 

involved in Eqs (1)-(2) have been obtained using the symbolic language MAPLE. The efficiency and accuracy of 

the developed method is demonstrated by studying the eigenfrequencies of circular cylindrical panels of Fig. 3 

under different sets of boundary conditions. The NASTRAN FEM code with 400 rectangular elements has been 

used to compare the results. 
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Figure 3: Geometry of the circular cylindrical shell.  
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Figure 4: Shell discretization. 

 

 

4.1 Example 1 

 The non-dimensional eigenfrequency parameter 
2(1 )

f
R E  of a simply supported circular 

cylindrical shell panel with movable curved edges in the axial direction ( 0x xN v w M  along the 

curved edges and 0su v w M  along the straight edges) has been studied. The first six eigenfrequency 

parameters are given in Table 1 as compared with a FEM solution. The first vibration mode for the normal 

displacement is shown in Fig. 5. The numerical results have been obtained with 80L , 361K  and 

1. 4e . The optimal value is 0.06optc  for the first mode, which has also been used for the next five 



8th GRACM International Congress on Computational Mechanics 

Volos, 12 July – 15 July 2015 

 

 

modes. The employed data are: 2kN / m621 10E , 0.10h m , 10.00R m , 5.00l m , m5.00a , 

0.30 .  

 

Table 1: Eigenfrequency parameters of the shell in Example 1. 

mode c  
2(1 )

f
R E  

MAEM FEM 

1 0.06 0.7035 0.692 

2 0.06 0.8705 0.865 

3 0.06 1.0469 1.043 

4 0.06 1.1128 1.109 

5 0.06 1.1875 1.201 

6 0.06 1.4020 1.493 

 

4.2 Example 2 

 In this example a clamped ( 0xu v w  along the curved edges and 0su v w  along 

the straight edges) cylindrical shell panel is analyzed. The numerical results have been obtained with 80L , 

361K  and 1. 4e . The other employed data are: 2kN / m621 10E , 9.896R m , 4.948l m , 

5.00a m , 28.93 , 0.30 . Two cases have been studied: (a) 2 sin( / 2) 100R h  and (b) 

2 sin( / 2) 20R h . The first eight eigenfrequency parameters are shown in Tables 2 and 3 as compared with 

an analytical solution [29]. The first and second vibration modes for the normal displacement for (a) case are 

shown in Fig. 6 and 7. The optimal value is 0.05optc , which has been used for all the computed modes. 

. 

 

 
Figure 5: 1

st
 vibration mode of the shell in Example 1. 
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5 CONCLUSIONS 

 The MAEM, a truly meshless method, has been applied for the dynamic analysis of thin cylindrical shell 

panels. The method is based on the principle of the analog equation, which converts the original equations into 

three substitute equations. The use of MQ-RBFs to approximate the fictitious sources allows, after direct 

integration, the approximation of the sought solutions by new RBFs, which approximate accurately not only the 

solution but also its derivatives. Thus the strong formulation of the problem avoids the drawbacks inherent in the 

conventional MQ-RBFs, while it maintains all the advantages of the truly mess-free methods. A method is 

presented to obtain optimum values for the shape parameter, which eliminates the uncertainty of its choice. It 

was observed that the optimum value of the shape parameter for the first mode can be used to obtain also the 

eigenfrequencies corresponding to higher modes. The solution algorithm is simple to construct and reasonably 

easy to program. The presented examples demonstrate the efficiency and accuracy of the method and show that 

the MAEM provides an efficient solver of difficult problems in engineering analysis. 

 

Table 2: Eigenfrequency parameters of the shell in Example 2: case a . 

mode c  
22 sin( / 2)

12 (1 )
f

l R
E

h
 

MAEM [29] 

1 0.05 101.568 99.263 

2 0.05 120.150 119.00 

3 0.05 152.806 151.13 

4 0.05 157.323 156.35 

5 0.05 173.581 172.52 

6 0.05 191.739 192.43 

7 0.05 201.702 201.67 

8 0.05 206.381 207.80 

 
Figure 6: 1

st
 vibration mode of the shell in Example 2 : case (a). 
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Table 3: Eigenfrequency parameters of the shell in Example 2: case (b). 

mode c  
22 sin( / 2)

12 (1 )
f

l R
E

h
 

MAEM [29] 

1 0.05 46.221 46.241 

2 0.05 72.619 74.300 

3 0.05 78.609 79.239 

4 0.05 107.131 110.14 

5 0.05 127.122 132.35 

6 0.05 132.441 135.51 

7 0.05 157.624 165.57 

8 0.05 160.162 166.82 

 

 

 
Figure 7: 2

nd
 vibration mode of the shell in Example 2: case (a). 
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